Correlation between A3243G and G9053A mtDNA mutations and ATP levels in diabetes mellitus patients using qPCR and electrochemical aptasensors

Original scientific article

Authors

  • Iman Permana Maksum Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia https://orcid.org/0000-0001-8166-8421
  • Rahmaniar Mulyani Department of Chemistry, Faculty of Sciences and Informatics, Universitas Jendral Achmad Yani, Cimahi, 40525, Indonesia  https://orcid.org/0009-0008-5113-1648
  • Yeni Wahyuni Hartati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia https://orcid.org/0000-0003-1463-6352
  • Irkham Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia https://orcid.org/0000-0001-9938-2931
  • Fanny Rizki Rahmadanthi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia https://orcid.org/0009-0000-5802-4054
  • Serly Zuliska Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia https://orcid.org/0009-0007-1256-0821
  • Toto Subroto Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia https://orcid.org/0000-0002-1629-407X

DOI:

https://doi.org/10.5599/admet.2767

Keywords:

Electrochemical biosensor, mitochondrial diabetes diagnostics, mitochondrial mutations, nucleic acid amplification

Abstract

Background and purpose: Mitochondrial DNA (mtDNA) mutations can impair oxidative phosphorylation and ATP production, potentially contributing to the pathogenesis of type 2 diabetes mellitus (T2DM). This study aimed to investigate the relationship between mtDNA mutations and ATP levels in blood and urine samples from T2DM patients. Experimental approach: Samples from 60 patients (30 with T2DM + mitochondrial disease [MD] phenotype and 30 with T2DM alone) were analyzed. mtDNA mutations A3243G and G9053A were detected using qPCR with dual-labeled probes (FAM for mutant, HEX for wild type) based on Cq comparisons. ATP concentrations were measured using a screen-printed carbon electrode (SPCE)-based electrochemical aptasensor. Key results: The A3243G mutation was more frequent and had higher heteroplasmy levels than G9053A, particularly in the T2DM + MD group. Although no statistically significant differences in ATP levels were observed between groups, descriptive ranges showed lower ATP concentrations in the T2DM + MD group (314 to 919 µM) compared to the T2DM group (746 to 1130 µM), both below the physiological range (1.500 to 1.900 µM). A similar pattern was found for A3243G mutation levels, while G9053A levels overlapped between groups. Two-way ANOVA showed a significant association between mutation presence and reduced ATP levels. Conclusion: The A3243G mutation may be more directly associated with mitochondrial ATP depletion in T2DM, while the role of G9053A remains inconclusive. This study highlights the potential of combining molecular and electrochemical tools to assess mitochondrial contributions in diabetes.

Downloads

Download data is not yet available.

References

[1] J.L. Fetterman, M. Holbrook, D.G. Westbrook, J.A. Brown, K.P. Feeley, R. Bretón-Romero, E.A. Linder, B.D. Berk, R.M. Weisbrod, M.E. Widlansky, N. Gokce, S.W. Ballinger, N.M. Hamburg. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardio¬vas¬cular disease. Cardiovascular Diabetology 15 (2016) 53. https://doi.org/10.1186/s12933-016-0372-y

[2] K. Szczepanowska, A. Trifunovic. Different faces of mitochondrial DNA mutators. Biochimica et Biophysica Acta - Bioenergetics 1847 (2015) 1362-1372. https://doi.org/10.1016/j.bbabio.2015.05.016

[3] F.R. Rahmadanthi, I.P. Maksum. Transfer RNA Mutation Associated with Type 2 Diabetes Mellitus. Biology 12 (2023) 871. https://doi.org/10.3390/biology12060871

[4] J. Wang, E.S. Schmitt, M.L. Landsverk, V.W. Zhang, F.Y. Li, B.H. Graham, W.J. Craigen, L.J.C. Wong. An integrated approach for classifying mitochondrial DNA variants: One clinical diagnostic laboratory’s experience. Genetics in Medicine 14 (2012) 620-626. https://doi.org/10.1038/gim.2012.4

[5] Y. Liu, Y. Li, C. Zhu, L. Tian, M. Guan, Y. Chen. Mitochondrial biogenesis dysfunction and metabolic dysfunction from a novel mitochondrial tRNAMet 4467 C>A mutation in a Han Chinese family with maternally inherited hypertension. Scientific Reports 7 (2017)3034. https://doi.org/10.1038/s41598-017-03303-w.

[6] I.J. Holt, A.E. Harding, J.A. Morgan-Hughes. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331 (1988) 717-719. https://doi.org/10.1038/331717a0

[7] R. Li, K. Ishikawa, J.H. Deng, S. Heman-Ackah, Y. Tamagawa, L. Yang, Y. Bai, K. Ichimura, M.X. Guan. Maternally inherited nonsyndromic hearing loss is associated with the T7511C mutation in the mitochondrial tRNASer(UCN) gene in a Japanese family. Biochemical and Biophysical Research Communications 328 (2005) 32-37. https://doi.org/10.1016/j.bbrc.2004.12.140

[8] J. Zheng, G. Sha-sha, T. Xiao-wen, Z. Yi, G. Min-xin. Human Mitochondrial tRNA Mutations in Maternally Inherited Deafness. Journal of Otology 8 (2013) 44-50. https://doi.org/10.1016/S1672-2930(13)50006-7

[9] U. Zekonyte, S.R. Bacman, C.T. Moraes. DNA-editing enzymes as potential treatments for heteroplasmic mtDNA diseases. Journal of Internal Medicine 287 (2020) 685-697. https://doi.org/10.1111/joim.13055

[10] I.P. Maksum, R. Mulyani, K. Hasan, M.I. Azizah, W. Destiarani, A.F. Maulana, M. Yusuf, T. Subroto. Study on the Mitochondrial Genome of Variants Carrying mt.3243A>G from Type-2 Diabetes Mellitus and Cataract Patients in Indonesia. HAYATI Journal of Biosciences 30 (2023) 1017-1024. https://doi.org/10.4308/hjb.30.6.1017-1024.

[11] Y.W. Hartati, S. Nur Topkaya, I.P. Maksum, M. Ozsoz. Sensitive Detection of Mitochondrial DNA A3243G tRNALeu Mutation via an Electrochemical Biosensor Using Meldola’s Blue as a Hybridization Indicator. Advances in Analytical Chemistry 3 (2013) 20-27. https://doi.org/10.5923/s.aac.201307.04

[12] G.J. Tranah, S.M. Katzman, K. Lauterjung, K. Yaffe, T.M. Manini, S. Kritchevsky, A.B. Newman, T.B. Harris, S.R. Cummings. Mitochondrial DNA m.3243A > G heteroplasmy affects multiple aging pheno-types and risk of mortality. Scientific Reports 8 (2018) 11887. https://doi.org/10.1038/s41598-018-30255-6

[13] K. Majamaa, J.S. Moilanen, S. Uimonen, A.M. Remes, P.I. Salmela, M. Kärppä, K.A.M. Majamaa-Voltti, H. Rusanen, M. Sorri, K.J. Peuhkurinen, I.E. Hassinen. Epidemiology of A3243G, the mutation for mito¬chon¬drial encephalomyopathy, lactic acidosis, and strokelike episodes: Prevalence of the mutation in an adult population. American Journal of Human Genetics 63 (1998) 447-454. https://doi.org/10.1086/301959

[14] L.M. Wittenhagen, S.O. Kelley. Dimerization of a pathogenic human mitochondrial tRNA. Nature Structural Biology 9 (2002) 586-590. https://doi.org/10.1038/nsb820

[15] I.P. Maksum, A.F. Maulana, M. Yusuf, R. Mulyani, W. Destiarani, R. Rustaman. Molecular Dynamics Simulation of a tRNA-Leucine Dimer with an A3243G Heteroplasmy Mutation in Human Mitochondria Using a Secondary Structure Prediction Approach. Indonesian Journal of Chemistry 22 (2022) 1043-1051. https://doi.org/10.22146/ijc.72774

[16] S.Y. Park, J.F. Gautier, S. Chon. Assessment of insulin secretion and insulin resistance in human. Diabetes and Metabolism Journal 45 (2021) 641-654. https://doi.org/10.4093/dmj.2021.0220.

[17] V.L. Tokarz, P.E. MacDonald, A. Klip. The cell biology of systemic insulin function. Journal of Cell Biology 217 (2018) 2273-2289. https://doi.org/10.1083/jcb.201802095

[18] I. Permana Maksum, S.R. Saputra, N. Indrayati, M. Yusuf, T. Subroto. Bioinformatics Study of m.9053G>A Mutation at the ATP6 Gene in Relation to Type 2 Diabetes Mellitus and Cataract Diseases. Bioinformatics and Biology Insights 11 (2017) 1-8. https://doi.org/10.1177/1177932217728515

[19] V.W.S. Liu, C. Zhang, A.W. Linnane, P. Nagley. Quantitative allele-specific PCR: Demonstration of age-associated accumulation in human tissues of the A→G mutation at nucleotide 3243 in mitochondrial DNA. Human Mutation 9 (1997) 265-271. https://doi.org/10.1002/(SICI)1098-1004(1997)9:3%3C265::AID-HUMU8%3E3.0.CO;2-6

[20] M.I. Azizah, R. Mulyani, I.P. Maksum. Design and Optimization of PCR-RFLP Assay for Detection of G9053A and T15663C Mutation in Mitochondrial DNA. Research Journal of Chemistry and Environment 27 (2023) 1-5. https://doi.org/10.25303/2702rjce01005

[21] E. Rong, H. Wang, S. Hao, Y. Fu, Y. Ma, T. Wang. Heteroplasmy Detection of Mitochondrial DNA A3243G Mutation Using Quantitative Real-Time PCR Assay Based on TaqMan-MGB Probes. BioMed Research International 2018 (2018) 1286480. https://doi.org/10.1155/2018/1286480

[22] I.P. Maksum, A. Farhani, S.D. Rachman, Y. Ngili. Making of the A3243g mutant template through site directed mutagenesis as positive control in PASA-Mismatch three bases. International Journal of PharmTech Research 5 (2013) 441-450

[23] J. Zheng, X. Li, K. Wang, J. Song, H. Qi. Electrochemical Nanoaptasensor for Continuous Monitoring of ATP Fluctuation at Subcellular Level. Analytical Chemistry 92 (2020) 10940-10945. https://doi.org/10.1021/acs.analchem.0c00569

[24] S. Zuliska, I.P. Maksum, Y. Einaga, G.T.M. Kadja, I. Irkham. Advances in electrochemical biosensors employing carbon-based electrodes for detection of biomarkers in diabetes mellitus. ADMET and DMPK 12 (2024) 487-527. https://doi.org/10.5599/admet.2361

[25] R. Mulyani, N. Yumna, I.P. Maksum, T. Subroto, Y.W. Hartati. Optimization of Aptamer-Based Electrochemical Biosensor for ATP Detection Using Screen-Printed Carbon Electrode/Gold Nanoparticles (SPCE/AuNP). Indonesian Journal of Chemistry 22 (2022) 1256-1268. https://doi.org/10.22146/ijc.72820

[26] R. Rustaman, R.R. Rahmawan, I.P. Maksum. in Silico Study of Aptamer Specificity for Detection of Adenosine Triphosphate (Atp) As Biosensor Development for Mitochondria Diabetes Diagnosis. Turkish Computational and Theoretical Chemistry 7 (2023) 58-69. https://doi.org/10.33435/TCANDTC.1181299

[27] M. Raymaekers, R. Smets, B. Maes, R. Cartuyvels. Checklist for optimization and validation of real-time PCR assays. Journal of Clinical Laboratory Analysis 23 (2009) 145-151. https://doi.org/10.1002/jcla.20307

[28] H.J. Agteresch, P.C. Dagnelie, J.W.O. Van Den Berg, J.H.P. Wilson. Adenosine triphosphate. Established and potential clinical applications. Drugs 58 (1999) 211-232. https://doi.org/10.2165/00003495-199958020-00002.

Published

12-06-2025

Issue

Section

Pharmaceutical and biomedical analysis

How to Cite

Correlation between A3243G and G9053A mtDNA mutations and ATP levels in diabetes mellitus patients using qPCR and electrochemical aptasensors: Original scientific article. (2025). ADMET and DMPK, 13(3), 2767. https://doi.org/10.5599/admet.2767

Funding data

Similar Articles

1-10 of 151

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)