Flavonoids from Clerodendrum genus and their biological activities

Review article

Authors

  • Meiske Naomi Mamuaja Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia https://orcid.org/0009-0000-6725-8135
  • Tati Herlina Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia https://orcid.org/0000-0003-0007-8695
  • Rymond Jusuf Rumampuk Department of Chemistry Universitas Negeri Manado, Tondano 95618, Indonesia https://orcid.org/0009-0000-8471-7786
  • Iman Permana Maksum Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia https://orcid.org/0000-0001-8166-8421
  • Yaya Rukayadi Department of Food Science Universiti Putra Malaysia, Malaysia https://orcid.org/0000-0001-7807-4462

DOI:

https://doi.org/10.5599/admet.2442

Keywords:

Traditional medicine, secondary metabolites, isolation, bioactivities

Abstract

Background and purpose: Many studies have been performed to identify new sources, their optimal isolation, and the biological activities of flavonoids due to nutraceutical, pharmaceutical, and cosmeceutical properties. Experimental approach: This review describes the method for flavonoid isolation and characteristic from the Clerodendrum genus and their biological activities with the indication of the most active ones.  To perform a comprehensive review, a thorough literature review using Google Scholar, Scopus, and Science Direct was performed with keyword alone or in combination with other words. Key results: The isolation and identification of flavonoids from the Clerodendrum genus have revealed a variety of compounds using various methods. Various studies conducted in vivo, in vitro and in silico also reported bioactivities of these flavonoids. Conclusion: Several factors determine the flavonoid content in the Clerodendrum genus, among others, the different parts of the plant, extraction techniques, and solvent combination used.  Isolated flavonoids also show significant biological activities, such as antioxidant, anti-inflammatory, antimicrobials, antidiabetic, anticancer, anti-tyrosinase, and neuroprotective agents.

Downloads

Download data is not yet available.

References

O.L. Erukainure, O. V. Oke, A.J. Ajiboye, O.Y. Okafor. Nutritional qualities and phytochemical constituents of Clerodendrum volubile, a tropical non-conventional vegetable. International Food Research Journal 18 (2011) 1393-1399. http://www.ifrj.upm.edu.my/18%20(04)%202011/(27)IFRJ-2011-009.pdf

N. Shrivastava, T. Patel. Clerodendrum and Heathcare: An Overview. Medicinal and Aromatic Plant Science and Biotechnology ©2007 Global Science Books 1 (2007) 142-150. http://www.globalsciencebooks.info/Online/GSBOnline/images/0706/MAPSB_1(1)/MAPSB_1(1)142-150o.pdf

P. Kar, A.K. Goyal, A.P. Das, A. Sen. Antioxidant and pharmaceutical potential of Clerodendrum L.: An overview. International Journal of Green Pharmacy 8 (2014). 210-216. https://www.greenpharmacy.info/index.php/ijgp/article/view/415 DOI: https://doi.org/10.4103/0973-8258.142671

A. Yadav, V.P. Kuamr, T. Chand, R.H. Bora. Ethno-medicinal knowledge of Clerodendrum L. among different tribes of Nambor reserve forest, Assam, India. Journal of Pharmacognosy and Phytochemistry 7 (2018). 1567-1570. https://www.phytojournal.com/archives/2018/vol7issue5/PartAA/7-5-235-900.pdf

R.M. Rueda. The Genus Clerodendrum (Verbenaceae) in Mesoamerica. Annals of the Missouri Botanical Garden 80 (1993) 870-890. https://doi.org/10.2307/2399934 DOI: https://doi.org/10.2307/2399934

V. Hamilton. Mabberley’s Plant-Book: A Portable Dictionary of Plants, their Classification and Uses (4th edition). Reference Reviews 32 (2018) 28-29. https://doi.org/10.1108/RR-12-2017-0259 DOI: https://doi.org/10.1108/RR-12-2017-0259

C. Leeratiwong, P. Chantaranothai, A.J. Paton. A Synopsis of the Genus Clerodendrum L. (Lamiaceae ) in Thailand. Tropical Natural History 11 (2011) 177-211. https://www.thaiscience.info/journals/Article/TNAH/10801631.pdf DOI: https://doi.org/10.58837/tnh.11.2.103002

L. Guang-Wei, M. Katsuyuki, Y. Tokihito, Y. Kenjiro. Effects of extract from Clerodendron trichotomum on blood pressure and renal function in rats and dogs. Journal of Ethnopharmacology 42 (1994) 77-82. https://doi.org/10.1016/0378-8741(94)90100-7 DOI: https://doi.org/10.1016/0378-8741(94)90100-7

J.J. Patel, S.R. Acharya, N.S. Acharya. Clerodendrum serratum (L.) Moon. - A review on traditional uses, phytochemistry and pharmacological activities. Journal of Ethnopharmacology 154 (2014) 268-285. https://doi.org/10.1016/j.jep.2014.03.071 DOI: https://doi.org/10.1016/j.jep.2014.03.071

P. Solapure, Dr. Pradeep, R. Mundugaru, P.L. Hegde. Comparative anti-inflammatory activity of Clerodendrum serratum (Linn) Moon and Solanum xanthocarpum Schrad and Wendl in wistar ablino rats. The Journal of Phytopharmacology 5 (2016) 38-44. http://dx.doi.org/10.31254/phyto.2016.5201 DOI: https://doi.org/10.31254/phyto.2016.5201

H. Rabiul, M. Subhasish, S. Sinha, M.G. Roy, D. Sinha, S. Gupta. Hepatoprotective activity of clerodendron inerme against paracetamol induced hepatic injury in rats for pharmaceutical product. International Journal of Drug Development and Research 3 (2011) 118-126. https://www.scholarscentral.com/pdfs/109115/hepatoprotective-activity-of-clerodendron-inerme-againstparacetamol-induced-hepatic-injury-in-rats-for-pharmaceutical-product.pdf

T. Payum. Phytoconstituents and proximate composition of clerodendrum colebrookianum walp.: A widely used anti high blood pressure medicinal food plant in eastern himalayas. Pharmacognosy Journal 12 (2020) 1534-1540. http://dx.doi.org/10.5530/pj.2020.12.210 DOI: https://doi.org/10.5530/pj.2020.12.210

M.K. Kar, T.R. Swain, S.K. Mishra. Antidiabetic activity of clerodendrum philippinum schauer leaves in streptozotocin induced diabetic rats. International Journal of Pharmacy and Pharmaceutical Sciences 7 (2015) 386-389. https://journals.innovareacademics.in/index.php/ijpps/article/view/7428

Ł. Kuźma, J. Gomulski. Biologically Active Diterpenoids in the Clerodendrum Genus—A Review. International Journal of Molecular Sciences 23 (2022) 11001. https://doi.org/10.3390/ijms231911001 DOI: https://doi.org/10.3390/ijms231911001

J.H. Wang, F. Luan, X.D. He, Y. Wang, M.X. Li. Traditional uses and pharmacological properties of Clerodendrum phytochemicals. Journal of Traditional and Complementary Medicine 8 (2018) 24-38. https://doi.org/10.1016/j.jtcme.2017.04.001 DOI: https://doi.org/10.1016/j.jtcme.2017.04.001

E.L. Santos, B.H.L.N.S. Maia, A.P. Ferriani, S.D. Teixeira. Flavonoids: Classification, Biosynthesis and Chemical Ecology. in: Flavonoids - From Biosynthesis to Human Health, IntechOpen Limited, London, UK, 2017, pp. 1-16. http://dx.doi.org/10.5772/67861 DOI: https://doi.org/10.5772/67861

B.H. Havsteen. The biochemistry and medical significance of the flavonoids. Pharmacology and Therapeutics 96 (2002) 67-202. https://doi.org/10.1016/s0163-7258(02)00298-x DOI: https://doi.org/10.1016/S0163-7258(02)00298-X

R.A. Dixon, G.M. Pasinetti. Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiology 154 (2010) 453-457. https://doi.org/10.1104/pp.110.161430 DOI: https://doi.org/10.1104/pp.110.161430

M.C. Dias, D.C.G.A. Pinto, A.M.S. Silva. Plant flavonoids: Chemical characteristics and biological activity. Molecules 26 (2021) 5377. https://doi.org/10.3390/molecules26175377 DOI: https://doi.org/10.3390/molecules26175377

W. Feng, Z. Hao, M. Li. Isolation and Structure Identification of Flavonoids. in: Flavonoids - From Biosynthesis to Human Health, IntechOpen Limited, London, UK, pp. 17-43. http://dx.doi.org/10.5772/67810 DOI: https://doi.org/10.5772/67810

S. Chen, X. Wang, Y. Cheng, H. Gao, X. Chen. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 28 (2023) 4982. https://doi.org/10.3390/molecules28134982 DOI: https://doi.org/10.3390/molecules28134982

A.N. Panche, A.D. Diwan, S.R. Chandra. Flavonoids: An overview. Journal of Nutritional Science 5 (2016) e47. https://doi.org/10.1017/jns.2016.41 DOI: https://doi.org/10.1017/jns.2016.41

W. Liu, X. Cui, Y. Zhong, R. Ma, B. Liu, Y. Xia. Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacological Research 193 (2023) 106812. https://doi.org/10.1016/j.phrs.2023.106812 DOI: https://doi.org/10.1016/j.phrs.2023.106812

K.G. Prasanth, A. Anandbabu, R. Venkatanarayanan, B. Dineshkumar, V. Sankar. HPTLC Technique: Determination of flavonoid from Clerodendrum viscosum vent roots. Der Pharma Chemica 4 (2012) 926-929. https://www.derpharmachemica.com/pharma-chemica/hptlc-technique-determination-of-flavonoid-from-clerodendrum-viscosum-vent-roots.pdf

J. Zhou, Q. Yang, X. Zhu, T. Lin, D. Hao, J. Xu. Antioxidant activities of clerodendrum cyrtophyllum turcz leaf extracts and their major components. PLoS ONE 15 (2020) e0234435. https://doi.org/10.1371/journal.pone.0234435 DOI: https://doi.org/10.1371/journal.pone.0234435

J.O. Chaves, M.C. de Souza, L.C. da Silva, D. Lachos-Perez, P.C. Torres-Mayanga, A.P. da F. Machado, T. Forster-Carneiro, M. Vázquez-Espinosa, A.V. González-de-Peredo, G.F. Barbero, M.A. Rostagno. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in Chemistry 8 (2020) 1-25. https://doi.org/10.3389/fchem.2020.507887 DOI: https://doi.org/10.3389/fchem.2020.507887

D.K. Magozwi, M. Dinala, N. Mokwana, X. Siwe-Noundou, R.W.M. Krause, M. Sonopo, L.J. McGaw, W.A. Augustyn, V.J. Tembu. Flavonoids from the genus euphorbia: Isolation, structure, pharmacological activities and structure-activity relationships. Pharmaceuticals 14 (2021) 428. https://doi.org/10.3390/ph14050428 DOI: https://doi.org/10.3390/ph14050428

W. Li, X. Zhang, S. Wang, X. Gao, X. Zhang. Research Progress on Extraction and Detection Technologies of Flavonoid Compounds in Foods. Foods 13 (2024) 628. https://doi.org/10.3390/foods13040628 DOI: https://doi.org/10.3390/foods13040628

T.R. Prashith Kekuda, S.J. Sudharshan. Ethnobotanical uses, phytochemistry and biological activities of Clerodendrum paniculatum L. (Lamiaceae): A comprehensive review. Journal of Drug Delivery and Therapeutics 8 (2018) 28-34. https://jddtonline.info/index.php/jddt/article/view/1930 DOI: https://doi.org/10.22270/jddt.v8i5-s.1930

P.N. Leena, N.A. Aleykutty. Isolation and Spectral identification of Quercetin fron the alcoholic root extract of Clerodendrum paniculatum. International Journal of Pharma Sciences and Research 7 (2016) 47-50. http://www.ijpsr.info/docs/IJPSR16-07-01-005.pdf

R. Kopilakkal, K. Chanda, M.M. Balamurali. Hepatoprotective and Antioxidant Capacity of Clerodendrum paniculatum Flower Extracts against Carbon Tetrachloride-Induced Hepatotoxicity in Rats. ACS Omega 6 (2021) 26489-26498. https://doi.org/10.1021/acsomega.1c03722 DOI: https://doi.org/10.1021/acsomega.1c03722

D. Pertiwi, P. Sitorus, I. Hafiz, D. Satria. Analysis of Component and Antibacterial Activity of Ethanol Extract and Etyl Acetate Fraction of Pagoda (Clerodendrum paniculatum L.) Leaves against Pseudomonas aeruginosa and MRSA. Research Journal of Pharmacy and Technology 15 (2022) 3047-3050. https://doi.org/10.52711/0974-360X.2022.00509 DOI: https://doi.org/10.52711/0974-360X.2022.00509

I. Hafiz, Rosidah, J. Silalahi. Antioxidant and anti-inflammatory activity of pagoda leaves (Clerodendrum paniculatum l.) ethanolic extract in white male rats (Rattus novergicus). International Journal of PharmTech Research 9 (2016) 165-170. https://sphinxsai.com/2016/ph_vol9_no5/1/(165-170)V9N5PT.pdf

N.P. Hegde, B.S. Hungund. Phytochemical profiling of Clerodendrum paniculatum leaf extracts: GC-MS, LC-MS analysis and comparative evaluation of antimicrobial, antioxidant & cytotoxic effects. Natural Product Research (2022) 2957-2964. https://doi.org/10.1080/14786419.2022.2140339 DOI: https://doi.org/10.1080/14786419.2022.2140339

Venkatesh S, Aswani K, Asheena Asharaf V V, Anjitha P, Suresh A, Babu G. Anti-diabetic activity of Clerodendrum paniculatum leaves by In-vitro, In-vivo and Ex-vivo methods. GSC Biological and Pharmaceutical Sciences 16 (2021) 211-218. https://doi.org/10.30574/gscbps.2021.16.1.0210 DOI: https://doi.org/10.30574/gscbps.2021.16.1.0210

S. Varghese, P. Kannappan, D. Kanakasabapathi, S.R. Madathil, M. Perumalsamy. Antidiabetic and antilipidemic effect of Clerodendrum paniculatum flower ethanolic extract. An in vivo investigation in Albino Wistar rats. Biocatalysis and Agricultural Biotechnology 36 (2021) 102095. https://doi.org/10.1016/j.bcab.2021.102095 DOI: https://doi.org/10.1016/j.bcab.2021.102095

K. Priyanka, I. Kuppast, B. Ramesh, S. Gururaj, H. Annegowda. Screening of aerial parts of the plant Clerodendrum paniculatum Linn for anti-anxiety activity. GSC Biological and Pharmaceutical Sciences 8 (2019) 46-50. http://dx.doi.org/10.30574/gscbps.2019.8.1.0159 DOI: https://doi.org/10.30574/gscbps.2019.8.1.0159

S. Sundaraganapathy, P.N. L.eena. Development and Assessment of Anti Cancer Activity of Phytosome Using Isolated Compound from Clerodendron Paniculatum Linn Root Extract. International Journal of Pharma Research and Health Sciences 4 (2016) 1399-1402. https://pharmahealthsciences.net/pdfs/volume4-issue52016/11.vol4-issue5-2016-MS-15331.pdf DOI: https://doi.org/10.21276/ijprhs.2016.05.11

M. Barman, A. Barman, S. Ray. Clerodendrum inerme (L.) Gaertn.: a critical review on current progress in traditional uses, phytochemistry, pharmacological aspects and toxicity. Phytochemistry Reviews (2024). http://dx.doi.org/10.1007/s11101-024-09934-y DOI: https://doi.org/10.1007/s11101-024-09934-y

W.J. Huang, H.J. Lee, H.L. Chen, P.C. Fan, Y.L. Ku, L.C. Chiou. Hispidulin, a constituent of Clerodendrum inerme that remitted motor tics, alleviated methamphetamine-induced hyperlocomotion without motor impairment in mice. Journal of Ethnopharmacology 166 (2015) 18-22. https://doi.org/10.1016/j.jep.2015.03.001 DOI: https://doi.org/10.1016/j.jep.2015.03.001

B. Achari, C. Chaudhuri, C.R. Saha, P.K. Dutta, S.C. Pakrashi. A clerodane diterpene and other constituents of Clerodendron inerme. Phytochemistry 29 (1990) 3671-3673. https://doi.org/10.1016/0031-9422(90)85302-V DOI: https://doi.org/10.1016/0031-9422(90)85302-V

S.R.M. Ibrahim, K.Z. Alshali, M.A. Fouad, E.S. Elkhayat, R.A. Al Haidari, G.A. Mohamed. Chemical constituents and biological investigations of the aerial parts of Egyptian Clerodendrum inerme. Bulletin of Faculty of Pharmacy, Cairo University 52 (2014) 165-170. https://doi.org/10.1016/j.bfopcu.2014.05.002 DOI: https://doi.org/10.1016/j.bfopcu.2014.05.002

Y.S. Yankanchi, S.A. Koli. Anti-inflammatory and Analgesic activity of mature leaves methanol extract of clerodendrum inerme L. (Gaertn). Journal of Pharmaceutical Sciences and Research 2 (2010) 782-785. https://www.europub.co.uk/articles/anti-inflammatory-and-analgesic-activity-of-mature-leaves-methanol-extract-of-clerodendrum-inerme-l-gaertn-A-155215

M. Nindatu, F. Noya, Y. Taihuttu. Efektivitas antimalaria rebusan tanaman lamburung meit (Clerondrum inerme Linn) pada penderita malaria di daerah pelayanan puskesmas Kairatu Barat, Kabupaten Seram Barat, Maluku. Molucca Medica (2018) 11-19. http://dx.doi.org/10.30598/molmed.2018.v11.i2.11 DOI: https://doi.org/10.30598/molmed.2018.v11.i2.11

S.A. Khan, N. Rasool, M. Riaz, R. Nadeem, U. Rashid, K. Rizwan, M. Zubair, I.H. Bukhari, T. Gulzar. Evaluation of antioxidant and cytotoxicity studies of clerodendrum inerme. Asian Journal of Chemistry 25 (2013) 7457-7462. http://dx.doi.org/10.14233/ajchem.2013.14831 DOI: https://doi.org/10.14233/ajchem.2013.14831

P.C. Fan, W.J. Huang, L.C. Chiou. Intractable chronic motor tics dramatically respond to clerodendrum inerme (L) gaertn. Journal of Child Neurology 24 (2009) 887-890. https://doi.org/10.1177/0883073808331088 DOI: https://doi.org/10.1177/0883073808331088

H.L. Chen, H.J. Lee, W.J. Huang, J.F. Chou, P.C. Fan, J.C. Du, Y.L. Ku, L.C. Chiou. Clerodendrum inerme leaf extract alleviates animal behaviors, hyperlocomotion, and prepulse inhibition disruptions, mimicking tourette syndrome and schizophrenia. Evidence-Based Complementary and Alternative Medicine (2012) 284301. https://doi.org/10.1155/2012/284301 DOI: https://doi.org/10.1155/2012/284301

Y. Chowdhary. Chemical Composition of Clerodendrum Phlomidis: A Review. Asian Journal of Research in Pharmaceutical Sciences 12:2 (2022) 133-136. https://doi.org/10.52711/2231-5659.2022.00022 DOI: https://doi.org/10.52711/2231-5659.2022.00022

P.R.S. Rajamanoharan. An ethno botanical survey of medicinal plants in Sillalai, Jaffna, Northern Province, Sri Lanka. International Journal of Herbal Medicine 1:4 (2014) 22-30. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20143146451

J. Santosh Kumar, M. Krishna Chaitanya, A.J. Semotiuk, V. Krishna. Indigenous knowledge of medicinal plants used by ethnic communities of South India. Ethnobotany Research and Applications 18 (2019) 1-112. http://dx.doi.org/10.32859/era.18.4.1-112 DOI: https://doi.org/10.32859/era.18.4.1-112

M.K. Mohan Maruga Raja, S.H. Mishra. Comprehensive review of Clerodendrum phlomidis: A traditionally used bitter. Journal of Chinese Integrative Medicine 8 (2010) 510-524. http://dx.doi.org/10.3736/jcim20100602 DOI: https://doi.org/10.3736/jcim20100602

C. Muthu, A.D. Reegan, S. Kingsley, S. Ignacimuthu. Larvicidal activity of pectolinaringenin from Clerodendrum phlomidis L. against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). Parasitology Research 111 (2012) 1059-1065. https://doi.org/10.1007/s00436-012-2932-8 DOI: https://doi.org/10.1007/s00436-012-2932-8

Y.P. Bharitkar, A. Hazra, S. Shah, S. Saha, A.K. Matoori, N.B. Mondal. New flavonoid glycosides and other chemical constituents from Clerodendrum phlomidis leaves: Isolation and characterisation. Natural Product Research 29 (2015) 1850-1856. https://doi.org/10.1080/14786419.2015.1009457 DOI: https://doi.org/10.1080/14786419.2015.1009457

A.K. Yadav, J.P. Thakur, J. Agrawal, D. Saikia, A. Pal, M.M. Gupta. Bioactive chemical constituents from the root of Clerodendrum phlomidis. Medicinal Chemistry Research 24 (2015) 1112-1118. https://doi.org/10.1007/s00044-014-1191-x DOI: https://doi.org/10.1007/s00044-014-1191-x

Y. Vaghasiya, S. V. Chanda. Screening of methanol and acetone extracts of fourteen Indian medicinal plants for antimicrobial activity. Turkish Journal of Biology 31 (2007) 243-248. https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=2053&context=biology

S.P. Dhanabal, M.K.M. Marugaraja, B. Suresh. Antidiabetic activity of Clerodendron phlomoidis leaf extract in alloxan-induced diabetic rats. Indian Journal of Pharmaceutical Sciences 70 (2008) 841-844. https://pmc.ncbi.nlm.nih.gov/articles/PMC3040893/pdf/IJPhS-70-841.pdf DOI: https://doi.org/10.4103/0250-474X.49141

V.R. Chidrawar, K.N. Patel, H.R. Chitme, S.S. Shiromwar. Pre-clinical evolutionary study of Clerodendrum phlomidis as an anti-obesity agent against high fat diet induced C57BL/6J mice. Asian Pacific Journal of Tropical Biomedicine 2 (2012) S1509-1519. https://doi.org/10.1016/S2221-1691(12)60446-8 DOI: https://doi.org/10.1016/S2221-1691(12)60446-8

J. Bhangale, R. V Patel, R. Jat, J.O. Bhangale. Antiarthritic activity of crude extract of Clerodendrum phlomidis (L.) leaves in FCA induced arthritis in rats. World Journal of Pharmaceutical Research 9 (2020) 715-729. https://www.researchgate.net/publication/348693789_ANTIARTHRITIC_ACTIVITY_OF_CRUDE_EXTRACT_OF_CLERODENDRUM_PHLOMIDIS_L_LEAVES_IN_FCA_INDUCED_ARTHRITIS_IN_RATS

R.H. Gokani, S.K. Lahiri, D.D. Santani, M.B. Shah. Evaluation of immunomodulatory activity of Clerodendrum phlomidis and Premna integrifolia root. International Journal of Pharmacology 3 (2007) 352-356. https://doi.org/10.3923/ijp.2007.352.356 DOI: https://doi.org/10.3923/ijp.2007.352.356

H. Joshi, K. Megeri. Antiamnesic evaluation of C. phlomidis Linn. bark extract in mice. Revista Brasileira de Ciencias Farmaceuticas/Brazilian Journal of Pharmaceutical Sciences 44 (2008) 717-725. https://doi.org/10.1590/S1516-93322008000400019 DOI: https://doi.org/10.1590/S1516-93322008000400019

S. Rani, N. Ahamed, S. Rajaram, R. Saluja, S. Thenmozhi, T. Murugesan. Anti-diarrhoeal evaluation of Clerodendrum phlomidis Linn. leaf extract in rats. Journal of Ethnopharmacology 68 (1999) 315-319. https://doi.org/10.1016/S0378-8741(99)00103-8 DOI: https://doi.org/10.1016/S0378-8741(99)00103-8

J.M. Brimson, N. Onlamoon, T. Tencomnao, P. Thitilertdecha. Clerodendrum petasites S. Moore: The therapeutic potential of phytochemicals, hispidulin, vanillic acid, verbascoside, and apigenin. Biomedicine and Pharmacotherapy 118 (2019) 1-6. https://doi.org/10.1016/j.biopha.2019.109319 DOI: https://doi.org/10.1016/j.biopha.2019.109319

C. Singharachai, C. Palanuvej, H. Kiyohara, H. Yamada, N. Ruangrungsi. Pharmacognostic specification of five root species in Thai traditional medicine remedy: Ben-Cha-Lo-Ka-Wi-Chian. Pharmacognosy Journal 3 (2011) 1-11. https://doi.org/10.5530/pj.2011.21.1 DOI: https://doi.org/10.5530/pj.2011.21.1

A. Panthong, D. Kanjanapothi, W.C. Taylor. Ethnobotanical review of medicinal plants from thai traditional books, Part I: Plants with anti-inflammatory, anti-asthmatic and antihypertensive properties. Journal of Ethnopharmacology 18 (1986) 213-228. https://doi.org/10.1016/0378-8741(86)90001-2 DOI: https://doi.org/10.1016/0378-8741(86)90001-2

A. Hazekamp, R. Verpoorte, A. Panthong. Isolation of a bronchodilator flavonoid from the Thai medicinal plant Clerodendrum petasites. Journal of Ethnopharmacology 78 (2001) 45-49. https://doi.org/10.1016/S0378-8741(01)00320-8 DOI: https://doi.org/10.1016/S0378-8741(01)00320-8

Hasriadi, A. Jongchanapong, W. Thongphichai, P.W. Dasuni Wasana, S. Sukrong, R. Suttisri, S. Amnuoypol, P. Towiwat. Antinociceptive efficacy of Clerodendrum petasites S. Moore, a Thai medicinal plant, and its CNS safety profiles. Journal of Traditional and Complementary Medicine 13 (2023) 81-92. https://doi.org/10.1016/j.jtcme.2022.11.001 DOI: https://doi.org/10.1016/j.jtcme.2022.11.001

P. Arjsri, K. Srisawad, S. Mapoung, W. Semmarath, P. Thippraphan, S. Umsumarng, S. Yodkeeree, P. Dejkriengkraikul. Hesperetin from Root Extract of Clerodendrum petasites S. Moore Inhibits SARS-CoV-2 Spike Protein S1 Subunit-Induced NLRP3 Inflammasome in A549 Lung Cells via Modulation of the Akt/MAPK/AP-1 Pathway. International Journal of Molecular Sciences 23 (2022) 10346. https://doi.org/10.3390/ijms231810346 DOI: https://doi.org/10.3390/ijms231810346

T. Kwuansawat, W. Putalun, W. Tassaneeyakul, P. Mahakunakorn. Phytochemical constituents and anti-inflammatory activities of Clerodendrum petasites. International Journal of Health Sciences (2022) 3497-3510. https://doi.org/10.53730/ijhs.v6nS1.5542 DOI: https://doi.org/10.53730/ijhs.v6nS1.5542

P. Thitilertdecha, R.H. Guy, M.G. Rowan. Characterisation of polyphenolic compounds in Clerodendrum petasites S. Moore and their potential for topical delivery through the skin. Journal of Ethnopharmacology 154 (2014) 400-407. https://doi.org/10.1016/j.jep.2014.04.021 DOI: https://doi.org/10.1016/j.jep.2014.04.021

A. Panthong, D. Kanjanapothi, T. Taesotikul, T. Wongcome, V. Reutrakul. Anti-inflammatory and antipyretic properties of Clerodendrum petasites S. Moore. Journal of Ethnopharmacology 85 (2003) 151-156. https://doi.org/10.1016/S0378-8741(02)00368-9 DOI: https://doi.org/10.1016/S0378-8741(02)00368-9

P. Thitilertdecha, M.G. Rowan, R.H. Guy. Topical formulation and dermal delivery of active phenolic compounds in the Thai medicinal plant - Clerodendrum petasites S. Moore. International Journal of Pharmaceutics 478 (2015) 39-45. https://doi.org/10.1016/j.ijpharm.2014.11.004 DOI: https://doi.org/10.1016/j.ijpharm.2014.11.004

A.A. Ajao, O.M. Oseni, O.T. Oladipo, Y.A. Adams, Y.O. Mukaila, A.A. Ajao. Clerodendrum volubile P. Beauv (Lamiaceae), an underutilized indigenous vegetable of utmost nutritive and pharmacological importance. Beni-Suef University Journal of Basic and Applied Sciences 7 (2018) 606-611. https://doi.org/10.1016/j.bjbas.2018.07.003 DOI: https://doi.org/10.1016/j.bjbas.2018.07.003

K. Okaiyeto, A.O. Falade, O.O. Oguntibeju. Traditional uses, nutritional and pharmacological potentials of clerodendrum volubile. Plants 10 (2021) 1893. https://doi.org/10.3390/plants10091893 DOI: https://doi.org/10.3390/plants10091893

O.L. Erukainure, M.A. Mesaik, O. Atolani, A. Muhammad, C.I. Chukwuma, M.S. Islam. Pectolinarigenin from the leaves of Clerodendrum volubile shows potent immunomodulatory activity by inhibiting T − cell proliferation and modulating respiratory oxidative burst in phagocytes. Biomedicine and Pharmacotherapy 93 (2017) 529-535. https://doi.org/10.1016/j.biopha.2017.06.060 DOI: https://doi.org/10.1016/j.biopha.2017.06.060

R.N. Ugbaja, T.F. Akinhanmi, A.S. James, E.I. Ugwor, A.A. Babalola, E.O. Ezenandu, V.C. Ugbaja, E.A. Emmanuel. Flavonoid-rich fractions from Clerodendrum volubile and Vernonia amygdalina extenuates arsenic-invoked hepato-renal toxicity via augmentation of the antioxidant system in rats. Clinical Nutrition Open Science 35 (2021) 12-25. https://doi.org/10.1016/j.nutos.2020.12.003 DOI: https://doi.org/10.1016/j.nutos.2020.12.003

O.L. Erukainure, M.Z. Zaruwa, M.I. Choudhary, S.A. Naqvi, N. Ashraf, R.M. Hafizur, A. Muhammad, O.A.T. Ebuehi, G.N. Elemo. Dietary fatty acids from leaves of Clerodendrum volubile induce cell cycle arrest, downregulate matrix metalloproteinase-9 expression, and modulate redox status in human breast cancer. Nutrition and Cancer 68 (2016) 634-645. https://doi.org/10.1080/01635581.2016.1156714 DOI: https://doi.org/10.1080/01635581.2016.1156714

O.L. Erukainure, N. Narainpersad, M. Singh, S. Olakunle, M.S. Islam. Clerodendrum volubile inhibits key enzymes linked to type 2 diabetes but induces cytotoxicity in human embryonic kidney (HEK293) cells via exacerbated oxidative stress and proinflammation. Biomedicine and Pharmacotherapy 106 (2018) 1144-1152. https://doi.org/10.1016/j.biopha.2018.07.013 DOI: https://doi.org/10.1016/j.biopha.2018.07.013

A. Saheed, G. Olufunke, Olorundare Gideon, S. Deeba N, M. Hasan, R. Albrecht, K. Mamoru. Cytotoxic Potentials of Clerodendrum Volubile against Prostate Cancer Cells and Its Possible Proteomic Targets. Journal of Clinical Nutrition and Food Science 2 (2019) 46-53. https://www.researchgate.net/publication/339075343_Cytotoxic_Potentials_of_Clerodendrum_Volubile_against_Prostate_Cancer_Cells_and_Its_Possible_Proteomic_Targets

T.H. Ogunwa, T.T. Adeyelu, R.Y. Fasimoye, M.B. Oyewale, T.A. Ademoye, O.C. Ilesanmi, O.B. Awe, S.A. Ajiboye, B.O. Oloye, D.R. Sholanke. Phytochemical evaluation and in vitro antioxidant status of Clerodendrum volubile (an indigenous medicinal plant). Pakistan Journal of Pharmaceutical Research 2 (2016) 77-88. https://journals.indexcopernicus.com/api/file/viewByFileId/120019 DOI: https://doi.org/10.22200/pjpr.2016277-88

S.A. Adefegha, G. Oboh. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension. Journal of Taibah University for Science 10 (2016) 521-533. https://doi.org/10.1016/j.jtusci.2015.10.008 DOI: https://doi.org/10.1016/j.jtusci.2015.10.008

R.K. Verma, T. Paraidathathu. Herbal medicines used in the traditional Indian medicinal system as a therapeutic treatment option for overweight and obesity management: A review. International Journal of Pharmacy and Pharmaceutical Sciences 6 (2014) 40-47. https://www.researchgate.net/publication/260677281_Herbal_medicines_used_in_the_traditional_Indian_medicinal_system_as_a_therapeutic_treatment_option_for_overweight_and_obesity_management_A_review

R.N. Jadeja, M.C. Thounaojam, T.B. Singh, R. V. Devkar, A. V. Ramachandran. Traditional uses, phytochemistry and pharmacology of Clerodendron glandulosum Coleb - a review. Asian Pacific Journal of Tropical Medicine 5 (2012) 1-6. https://doi.org/10.1016/S1995-7645(11)60236-8 DOI: https://doi.org/10.1016/S1995-7645(11)60236-8

P.K. Deb, P. Khound, S. Bhattacharjee, P. Choudhury, H. Sarma, R. Devi, B. Sarkar. Variation in chemical constituents, in-vitro bioactivity and toxicity profile among different parts of Clerodendrum glandulosum Lindl. (C. colebrookianum Walp.). South African Journal of Botany 140 (2021) 50-61. https://doi.org/10.1016/j.sajb.2021.03.023 DOI: https://doi.org/10.1016/j.sajb.2021.03.023

P. Khound, P.K. Deb, S. Bhattacharjee, K.D. Medina, P.P. Sarma, B. Sarkar, R. Devi. Phenolic enriched fraction of Clerodendrum glandulosum Lindl. leaf extract ameliorates hyperglycemia and oxidative stress in streptozotocin-nicotinamide induced diabetic rats. Journal of Ayurveda and Integrative Medicine 15 (2024) 100906. https://doi.org/10.1016/j.jaim.2024.100906 DOI: https://doi.org/10.1016/j.jaim.2024.100906

R.N. Jadeja, M.C. Thounaojam, Ansarullah, V.B. Patel, R. V. Devkar, A. V. Ramachandran. Protective effect of Clerodendron glandulosum extract against experimentally induced metabolic syndrome in rats. Pharmaceutical Biology 48 (2010) 1312-1319. https://doi.org/10.3109/13880201003739304 DOI: https://doi.org/10.3109/13880201003739304

R.N. Jadeja, M.C. Thounaojam, U. V. Ramani, R. V. Devkar, A. V. Ramachandran. Anti-obesity potential of Clerodendron glandulosum.Coleb leaf aqueous extract. Journal of Ethnopharmacology 135 (2011) 338-343. https://doi.org/10.1016/j.jep.2011.03.020 DOI: https://doi.org/10.1016/j.jep.2011.03.020

R. Jadeja, M. Thounaojam, Ansarullah, A. V. Ramachandran, R. Devkar. Phytochemical constituents and free radical scavenging activity of Clerodendron glandulosum.Coleb methanolic extract. Journal of Complementary and Integrative Medicine 6 (2009). https://doi.org/10.2202/1553-3840.1226. DOI: https://doi.org/10.2202/1553-3840.1226

R.N. Jadeja, M.C. Thounaojam, Ansarullah, R. V. Devkar, A. V. Ramachandran. Clerodendron glandulosum Coleb., Verbenaceae, ameliorates high fat diet-induced alteration in lipid and cholesterol metabolism in rats. Revista Brasileira de Farmacognosia 20 (2010) 117-123. http://dx.doi.org/10.1590/S0102-695X2010000100023 DOI: https://doi.org/10.1590/S0102-695X2010000100023

R.N. Jadeja, M.C. Thounaojam, Ansarullah, R. V. Devkar, A. V. Ramachandran. A preliminary study on hypolipidemic effect of aqueous leaf extract of Clerodendron glandulosum.Coleb. International Journal of Green Pharmacy 3 (2009) 285-289. https://www.greenpharmacy.info/index.php/ijgp/article/view/102 DOI: https://doi.org/10.4103/0973-8258.59733

J.M. Davis, E.A. Murphy, M.D. Carmichael. Effects of the dietary flavonoid quercetin upon performance and health. Current Sports Medicine Reports 8 (2009) 206-213. http://dx.doi.org/10.1249/JSR.0b013e3181ae8959 DOI: https://doi.org/10.1249/JSR.0b013e3181ae8959

P.S. Bustos, R. Deza-Ponzio, P.L. Páez, I. Albesa, J.L. Cabrera, M.B. Virgolini, M.G. Ortega. Protective effect of quercetin in gentamicin-induced oxidative stress in vitro and in vivo in blood cells. Effect on gentamicin antimicrobial activity. Environmental Toxicology and Pharmacology 48 (2016) 253-264. https://doi.org/10.1016/j.etap.2016.11.004 DOI: https://doi.org/10.1016/j.etap.2016.11.004

R. Amorati, A. Baschieri, A. Cowden, L. Valgimigli. The antioxidant activity of quercetin in water solution. Biomimetics 2 (2017) 9. https://doi.org/10.3390/biomimetics2030009 DOI: https://doi.org/10.3390/biomimetics2030009

J.H. Kim, M.J. Kang, H.N. Choi, S.M. Jeong, Y.M. Lee, J.I. Kim. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutrition Research and Practice 5 (2011) 107-111. https://doi.org/10.4162/nrp.2011.5.2.107 DOI: https://doi.org/10.4162/nrp.2011.5.2.107

I.U.H. Bhat, R. Bhat. Quercetin: A bioactive compound imparting cardiovascular and neuroprotective benefits: Scope for exploring fresh produce, their wastes, and by-products. Biology 10 (2021) 586. https://doi.org/10.3390/biology10070586 DOI: https://doi.org/10.3390/biology10070586

S. Chen, H. Jiang, X. Wu, J. Fang. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediators of Inflammation 2016 (2016) 340637. https://doi.org/10.1155/2016/9340637 DOI: https://doi.org/10.1155/2016/9340637

M.C. Serban, A. Sahebkar, A. Zanchetti, D.P. Mikhailidis, G. Howard, D. Antal, F. Andrica, A. Ahmed, W.S. Aronow, P. Muntner, G.Y.H. Lip, I. Graham, N. Wong, J. Rysz, M. Banach. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of the American Heart Association 5 (2016). https://doi.org/10.1161/jaha.115.002713. DOI: https://doi.org/10.1161/JAHA.115.002713

D. Szwajgier, K. Borowiec, J. Zapp. Activity-guided purification reveals quercetin as the most efficient cholinesterase inhibitor in wild strawberry (Fragaria vesca L.) and apricot (Prunus armeniaca L.) fruit extract. Emirates Journal of Food and Agriculture 31 (2019) 386-394. https://doi.org/10.9755/ejfa.2019.v31.i5.1957 DOI: https://doi.org/10.9755/ejfa.2019.v31.i5.1957

A. Rauf, M. Imran, I.A. Khan, M. ur-Rehman, S.A. Gilani, Z. Mehmood, M.S. Mubarak. Anticancer potential of quercetin: A comprehensive review. Phytotherapy Research 32 (2018) 2109-2130. https://doi.org/10.1002/ptr.6155 DOI: https://doi.org/10.1002/ptr.6155

H.A.S. El-Nashar, M.I. Gamal El-Din, L. Hritcu, O.A. Eldahshan. Insights on the inhibitory power of flavonoids on tyrosinase activity: A survey from 2016 to 2021. Molecules 26 (2021) 7546. https://doi.org/10.3390/molecules26247546 DOI: https://doi.org/10.3390/molecules26247546

N. Salem Alrawaiq, A. Abdullah. A review of flavonoid quercetin: Metabolism, Bioactivity and antioxidant properties. International Journal of PharmTech Research 6 (2014) 933-941. https://sphinxsai.com/2014/phvolpt3/1/(933-941)Jul-Aug14.pdf

Chen Yuting, Zheng Rongliang, Jia Zhongjian, Ju Yong. Flavonoids as superoxide scavengers and antioxidants. Free Radical Biology and Medicine 9 (1990) 19-21. https://doi.org/10.1016/0891-5849(90)90045-K DOI: https://doi.org/10.1016/0891-5849(90)90045-K

C. Manach, C. Morand, O. Texier, M.L. Favier, G. Agullo, C. Demigne, F. Regerat, C. Remesy. Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. Journal of Nutrition 125 (1995) 1911-1922. https://doi.org/10.1093/jn/125.7.1911 DOI: https://doi.org/10.1093/jn/125.7.1911

A.N. Begum, J. Terao. Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability. Journal of Nutritional Biochemistry 13 (2002) 265-272. https://doi.org/10.1016/S0955-2863(01)00219-4 DOI: https://doi.org/10.1016/S0955-2863(01)00219-4

A.D. Mariee, G.M. Abd-Allah, H.A. El-Beshbishy. Protective effect of dietary flavonoid quercetin against lipemic-oxidative hepatic injury in hypercholesterolemic rats. Pharmaceutical Biology 50 (2012) 265-272. https://doi.org/10.1016/S0955-2863(01)00219-4 DOI: https://doi.org/10.3109/13880209.2012.655424

A. Yarahmadi, F. Khademi, Z. Mostafavi-Pour, F. Zal. In-Vitro Analysis of Glucose and Quercetin Effects on m-TOR and Nrf-2 Expression in HepG2 Cell Line (Diabetes and Cancer Connection). Nutrition and Cancer 70 (2018) 770-775. https://doi.org/10.1080/01635581.2018.1470654 DOI: https://doi.org/10.1080/01635581.2018.1470654

M. Vessal, M. Hemmati, M. Vasei. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology 135 (2003) 357-364. https://doi.org/10.1016/S1532-0456(03)00140-6 DOI: https://doi.org/10.1016/S1532-0456(03)00140-6

O. Coskun, M. Kanter, A. Korkmaz, S. Oter. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacological Research 51 (2005) 117-123. https://doi.org/10.1016/j.phrs.2004.06.002 DOI: https://doi.org/10.1016/j.phrs.2004.06.002

M. Kobori, S. Masumoto, Y. Akimoto, Y. Takahashi. Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Molecular Nutrition and Food Research 53 (2009) 859-868. https://doi.org/10.1002/mnfr.200800310 DOI: https://doi.org/10.1002/mnfr.200800310

S. Wein, N. Behm, R.K. Petersen, K. Kristiansen, S. Wolffram. Quercetin enhances adiponectin secretion by a PPAR-γ independent mechanism. European Journal of Pharmaceutical Sciences 41 (2010) 16-22. https://doi.org/10.1016/j.ejps.2010.05.004 DOI: https://doi.org/10.1016/j.ejps.2010.05.004

O.M. Ahmed, T. Mohamed, H. Moustafa, H. Hamdy, R.R. Ahmed, E. Aboud. Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomedicine and Pharmacotherapy 101 (2018) 58-73. https://doi.org/10.1016/j.biopha.2018.02.040 DOI: https://doi.org/10.1016/j.biopha.2018.02.040

O. Maksymchuk, A. Shysh, I. Rosohatska, M. Chashchyn. Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacological Reports 69 (2017) 1386-1392. https://doi.org/10.1016/j.pharep.2017.05.020 DOI: https://doi.org/10.1016/j.pharep.2017.05.020

R.M. Maciel, F.B. Carvalho, A.A. Olabiyi, R. Schmatz, J.M. Gutierres, N. Stefanello, D. Zanini, M.M. Rosa, C.M. Andrade, M.A. Rubin, M.R. Schetinger, V.M. Morsch, C.C. Danesi, S.T.A. Lopes. Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities. Biomedicine and Pharmacotherapy 84 (2016) 559-568. https://doi.org/10.1016/j.biopha.2016.09.069 DOI: https://doi.org/10.1016/j.biopha.2016.09.069

C.S. Kim, Y. Kwon, S.Y. Choe, S.M. Hong, H. Yoo, T. Goto, T. Kawada, H.S. Choi, Y. Joe, H.T. Chung, R. Yu. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutrition and Metabolism 12 (2015) 33. https://doi.org/10.1186/s12986-015-0030-5 DOI: https://doi.org/10.1186/s12986-015-0030-5

Z. Jing, Z. Wang, X. Li, X. Li, T. Cao, Y. Bi, J. Zhou, X. Chen, D. Yu, L. Zhu, S. Li. Protective Effect of Quercetin on Posttraumatic Cardiac Injury. Scientific Reports 6 (2016) 30812 . https://doi.org/10.1038/srep30812 DOI: https://doi.org/10.1038/srep30812

Y.M. Zhang, Z.Y. Zhang, R.X. Wang. Protective Mechanisms of Quercetin Against Myocardial Ischemia Reperfusion Injury. Frontiers in Physiology 11 (2020) 30812. https://doi.org/10.1038/srep30812 DOI: https://doi.org/10.3389/fphys.2020.00956

F. Elbarbry, K. Abdelkawy, N. Moshirian, A.M. Abdel-Megied. The antihypertensive effect of quercetin in young spontaneously hypertensive rats; role of arachidonic acid metabolism. International Journal of Molecular Sciences 21 (2020) 6554. https://doi.org/10.3390/ijms21186554 DOI: https://doi.org/10.3390/ijms21186554

S. Muhammad, N. Fatima. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides. Pharmacognosy Magazine 11 (2015) S123-S126. https://pmc.ncbi.nlm.nih.gov/articles/PMC4461951/ DOI: https://doi.org/10.4103/0973-1296.157712

I.E. Orhan. Cholinesterase Inhibitory Potential of Quercetin towards Alzheimer’s Disease - A Promising Natural Molecule or Fashion of the Day? - A Narrowed Review. Current Neuropharmacology 19 (2020) 2205-2213. http://dx.doi.org/10.2174/1570159X18666201119153807 DOI: https://doi.org/10.2174/1570159X18666201119153807

A.M. Sabogal-Guáqueta, J.I. Muñoz-Manco, J.R. Ramírez-Pineda, M. Lamprea-Rodriguez, E. Osorio, G.P. Cardona-Gómez. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93 (2015) 134-145. https://doi.org/10.1016/j.neuropharm.2015.01.027 DOI: https://doi.org/10.1016/j.neuropharm.2015.01.027

A.B. Granado-Serrano, M.A. Martín, L. Bravo, L. Goya, S. Ramos. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). Journal of Nutrition 136 (2006) 2715-2721. https://doi.org/10.1093/jn/136.11.2715 DOI: https://doi.org/10.1093/jn/136.11.2715

N. Gulati, B. Laudet, V.M. Zohrabian, R. Murali, M. Jhanwar-Uniyal. The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Research 26 (2006) 1177-1181. https://ar.iiarjournals.org/content/anticanres/26/2A/1177.full.pdf

Y.H. Kim, Y.J. Lee. TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation. Journal of Cellular Biochemistry 100 (2007) 998-1009. https://doi.org/10.1002/jcb.21098 DOI: https://doi.org/10.1002/jcb.21098

Q. Wu, P.W. Needs, Y. Lu, P.A. Kroon, D. Ren, X. Yang. Different antitumor effects of quercetin, quercetin-3′-sulfate and quercetin-3-glucuronide in human breast cancer MCF-7 cells. Food and Function 9 (2018) 1736-1746. https://doi.org/10.1039/C7FO01964E DOI: https://doi.org/10.1039/C7FO01964E

A. Constantinou, R. Mehta, C. Runyan, K. Rao, A. Vaughan, R. Moon. Flavonoids as DNA topoisomerase antagonists and poisons: Structure-activity relationships. Journal of Natural Products 58 (1995) 217-225. https://doi.org/10.1021/np50116a009 DOI: https://doi.org/10.1021/np50116a009

M. Fan, G. Zhang, X. Hu, X. Xu, D. Gong. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Research International 100 (2017) 226-233. https://doi.org/10.1016/j.foodres.2017.07.010 DOI: https://doi.org/10.1016/j.foodres.2017.07.010

S. Zolghadri, A. Bahrami, M.T. Hassan Khan, J. Munoz-Munoz, F. Garcia-Molina, F. Garcia-Canovas, A.A. Saboury. A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 34 (2019) 279-309. https://doi.org/10.1080/14756366.2018.1545767 DOI: https://doi.org/10.1080/14756366.2018.1545767

K. Jakimiuk, S. Sari, R. Milewski, C.T. Supuran, D. Şöhretoğlu, M. Tomczyk. Flavonoids as tyrosinase inhibitors in in silico and in vitro models: basic framework of SAR using a statistical modelling approach. Journal of Enzyme Inhibition and Medicinal Chemistry 37 (2022) 421-430. https://doi.org/10.1080/14756366.2021.2014832 DOI: https://doi.org/10.1080/14756366.2021.2014832

M. Fan, H. Ding, G. Zhang, X. Hu, D. Gong. Relationships of dietary flavonoid structure with its tyrosinase inhibitory activity and affinity. LWT 107 (2019) 25-34. https://doi.org/10.1016/j.lwt.2019.02.076 DOI: https://doi.org/10.1016/j.lwt.2019.02.076

S. a. Park, J. Jegal, K.W. Chung, H.J. Jung, S.G. Noh, H.Y. Chung, J. Ahn, J. Kim, M.H. Yang. Isolation of tyrosinase and melanogenesis inhibitory flavonoids from Juniperus chinensis fruits. Bioscience, Biotechnology and Biochemistry 82 (2018) 2041-2048. https://doi.org/10.1080/09168451.2018.1511367 DOI: https://doi.org/10.1080/09168451.2018.1511367

S.R. Alizadeh, M.A. Ebrahimzadeh. Quercetin derivatives: Drug design, development, and biological activities, a review. European Journal of Medicinal Chemistry 229 (2022) 49-56. https://doi.org/10.1016/j.ejmech.2021.114068 DOI: https://doi.org/10.1016/j.ejmech.2021.114068

S. Singh, V. Kushwah, A.K. Agrawal, S. Jain. Insulin- and quercetin-loaded liquid crystalline nanoparticles: Implications on oral bioavailability, antidiabetic and antioxidant efficacy. Nanomedicine 13 (2018) 521-537. https://doi.org/10.2217/nnm-2017-0278 DOI: https://doi.org/10.2217/nnm-2017-0278

M.S. Valencia, M. Franco da Silva Júnior, F.H. Xavier Júnior, B. de Oliveira Veras, E. Fernanda de Oliveira Borba, T. Gonçalves da Silva, V.L. Xavier, M. Pessoa de Souza, M. das G. Carneiro-da-Cunha. Bioactivity and cytotoxicity of quercetin-loaded, lecithin-chitosan nanoparticles. Biocatalysis and Agricultural Biotechnology 31 (2021) 101879. https://doi.org/10.1016/j.bcab.2020.101879 DOI: https://doi.org/10.1016/j.bcab.2020.101879

R.G.R. Pinheiro, A. Granja, J.A. Loureiro, M.C. Pereira, M. Pinheiro, A.R. Neves, S. Reis. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. European Journal of Pharmaceutical Sciences 148 (2020) 105314. https://doi.org/10.1016/j.ejps.2020.105314 DOI: https://doi.org/10.1016/j.ejps.2020.105314

W. Chen, X. Ju, R.E. Aluko, Y. Zou, Z. Wang, M. Liu, R. He. Rice bran protein-based nanoemulsion carrier for improving stability and bioavailability of quercetin. Food Hydrocolloids 108 (2020) 106042. https://doi.org/10.1016/j.foodhyd.2020.106042 DOI: https://doi.org/10.1016/j.foodhyd.2020.106042

N. Wu, Y. Zhang, J. Ren, A. Zeng, J. Liu. Preparation of quercetin-nicotinamide co-crystals and their evaluation under in vivo and in vitro conditions. RSC Advances 10 (2020) 21852-21859. https://doi.org/10.1039/D0RA03324C DOI: https://doi.org/10.1039/D0RA03324C

M.H. Choi, S.H. Yang, D.S. Kim, N.D. Kim, H.J. Shin, K. Liu. Novel quercetin derivative of 3,7-dioleylquercetin shows less toxicity and highly potent tyrosinase inhibition activity. International Journal of Molecular Sciences 22 (2021) 4264. https://doi.org/10.3390/ijms22084264 DOI: https://doi.org/10.3390/ijms22084264

D. Kashyap, A. Sharma, H.S. Tuli, K. Sak, V.K. Garg, H.S. Buttar, W.N. Setzer, G. Sethi. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. Journal of Functional Foods 48 (2018) 457-471. https://doi.org/10.1016/j.jff.2018.07.037 DOI: https://doi.org/10.1016/j.jff.2018.07.037

J. Madunić, I.V. Madunić, G. Gajski, J. Popić, V. Garaj-Vrhovac. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Letters 413 (2018) 11-22. https://doi.org/10.1016/j.canlet.2017.10.041 DOI: https://doi.org/10.1016/j.canlet.2017.10.041

C. Huang, Y.X. Wei, M.C. Shen, Y.H. Tu, C.C. Wang, H.C. Huang. Chrysin, abundant in Morinda citrifolia fruit water-EtOAc extracts, combined with apigenin synergistically induced apoptosis and inhibited migration in human breast and liver cancer cells. Journal of Agricultural and Food Chemistry 64 (2016) 4235-4245. https://doi.org/10.1021/acs.jafc.6b00766 DOI: https://doi.org/10.1021/acs.jafc.6b00766

S. Nabavi, S. Habtemariam, M. Daglia, S. Nabavi. Apigenin and Breast Cancers: From Chemistry to Medicine. Anti-Cancer Agents in Medicinal Chemistry 15 (2015) 728-735. http://dx.doi.org/10.2174/1871520615666150304120643 DOI: https://doi.org/10.2174/1871520615666150304120643

X. Xu, M. Li, W. Chen, H. Yu, Y. Yang, L. Hang. Apigenin Attenuates Oxidative Injury in ARPE-19 Cells thorough Activation of Nrf2 Pathway. Oxidative Medicine and Cellular Longevity 2016 (2016) 378461. https://doi.org/10.1155/2016/4378461 DOI: https://doi.org/10.1155/2016/4378461

S.Q. Cai, Z.M. Tang, C. Xiong, F.F. Wu, J.R. Zhao, Q. Zhang, L. Wang, X.N. Zhang, X.H. Zhao. The anti-inflammatory effects of apigenin and genistein on the rat intestinal epithelial (IEC-6) cells with TNF-α stimulation in response to heat treatment. Current Research in Food Science 5 (2022) 918-926. https://doi.org/10.1016/j.crfs.2022.05.011 DOI: https://doi.org/10.1016/j.crfs.2022.05.011

A.H. Rahmani, M.A. Alsahli, A. Almatroudi, M.A. Almogbel, A.A. Khan, S. Anwar, S.A. Almatroodi. The Potential Role of Apigenin in Cancer Prevention and Treatment. Molecules 27 (2022) 6051. https://doi.org/10.3390/molecules27186051 DOI: https://doi.org/10.3390/molecules27186051

H. Sharma, R. Kanwal, N. Bhaskaran, S. Gupta. Plant flavone apigenin binds to nucleic acid bases and reduces oxidative DNA damage in prostate epithelial cells. PLoS ONE 9 (2014) e91588. https://doi.org/10.1371/journal.pone.0091588 DOI: https://doi.org/10.1371/journal.pone.0091588

S. Shukla, S. Gupta. Abstract 3804: Transcriptional repression of androgen receptor in human prostate cancer cells by plant flavone apigenin. Cancer Research 70 (2010) 3804. https://doi.org/10.1158/1538-7445.AM10-3804 DOI: https://doi.org/10.1158/1538-7445.AM10-3804

B. Mafuvadze, Y. Liang, C. Besch-Williford, X. Zhang, S.M. Hyder. Apigenin Induces Apoptosis and Blocks Growth of Medroxyprogesterone Acetate-Dependent BT-474 Xenograft Tumors. Hormones and Cancer 3 (2012) 160-171. https://doi.org/10.1007/s12672-012-0114-x DOI: https://doi.org/10.1007/s12672-012-0114-x

P.S. Wu, J.H. Yen, M.C. Kou, M.J. Wu. Luteolin and apigenin attenuate 4-hydroxy- 2-nonenal-mediated cell death through modulation of UPR, Nrf2-ARE and MAPK pathways in PC12 cells. PLoS ONE 10 (2015) e0130599. https://doi.org/10.1371/journal.pone.0130599 DOI: https://doi.org/10.1371/journal.pone.0130599

S. Shukla, S. Gupta. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle 6 (2007) 1102-1114. https://doi.org/10.4161/cc.6.9.4146 DOI: https://doi.org/10.4161/cc.6.9.4146

R.H. Patil, R.L. Babu, M. Naveen Kumar, K.M. Kiran Kumar, S.M. Hegde, G.T. Ramesh, S. Chidananda Sharma. Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells. Molecular and Cellular Biochemistry 403 (2015) 95-106. https://doi.org/10.1007/s11010-015-2340-3 DOI: https://doi.org/10.1007/s11010-015-2340-3

O.H. Kang, J.H. Lee, D.Y. Kwon. Apigenin inhibits release of inflammatory mediators by blocking the NF-κB activation pathways in the HMC-1 cells. Immunopharmacology and Immunotoxicology 33 (2011) 473-479. https://doi.org/10.3109/08923973.2010.538851 DOI: https://doi.org/10.3109/08923973.2010.538851

D. Li, L. Wang, Y. Jing, B. Jiang, L. Zhao, Y. Miao, S. Xin, C. Ge. Exploring Molecular Targets and Mechanisms of Apigenin in the Treatment of Papillary Thyroid Carcinoma Based on Network Pharmacology and Molecular Docking Analysis. Natural Product Communications 17(10) (2022). https://doi.org/10.1177/1934578X221135435 DOI: https://doi.org/10.1177/1934578X221135435

R. Zhang, X. Hu, B. Zhang, Z. Wang, C. Hao, J. Xin, Q. Guo. Whitening Activity of Constituents Isolated from the Trichosanthes Pulp. Evidence-Based Complementary and Alternative Medicine 2020 (2020) 582579. https://doi.org/10.1155/2020/2582579 DOI: https://doi.org/10.1155/2020/2582579

E.S. Karaoğlan, M. Koca. Tyrosinase, cholinesterase inhibitory activity and molecular docking studies on apigenin and vitexin. İstanbul Journal of Pharmacy 50 (2020) 268-271. http://dx.doi.org/10.26650/IstanbulJPharm.2019.0076 DOI: https://doi.org/10.26650/IstanbulJPharm.2019.0076

K. Chauhan, F. Goel, S. Singh. Apigenin protects melanocytes and improve tyrosinase activity in a hydroquinone induced vitiligo mouse model targeting P38 MAP kinase signaling: histopathology and immunohistochemistry analysis. Naunyn-Schmiedeberg’s Archives of Pharmacology (2023) 4859-4869. https://doi.org/10.1007/s00210-023-02917-4 DOI: https://doi.org/10.1007/s00210-023-02917-4

Y. Ye, H. Wang, J.H. Chu, G.X. Chou, Z.L. Yu. Activation of p38 MAPK pathway contributes to the melanogenic property of apigenin in B16 cells. Experimental Dermatology 20 (2011) 755-757. https://doi.org/10.1111/j.1600-0625.2011.01297.x DOI: https://doi.org/10.1111/j.1600-0625.2011.01297.x

L. Apaza Ticona, C. Thiebaut Estrada, Á. Rumbero Sánchez. Inhibition of melanin production and tyrosinase activity by flavonoids isolated from Loranthus acutifolius. Natural Product Research 35 (2021) 4690-4693. https://doi.org/10.1080/14786419.2019.1709185 DOI: https://doi.org/10.1080/14786419.2019.1709185

L. Wang, Q. Ma. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacology and Therapeutics 190 (2018) 105-127. https://doi.org/10.1016/j.pharmthera.2018.05.006 DOI: https://doi.org/10.1016/j.pharmthera.2018.05.006

G.H. Zhang, Q. Wang, J.J. Chen, X.M. Zhang, S.C. Tam, Y.T. Zheng. The anti-HIV-1 effect of scutellarin. Biochemical and Biophysical Research Communications 334 (2005) 812-816. https://doi.org/10.1016/j.bbrc.2005.06.166 DOI: https://doi.org/10.1016/j.bbrc.2005.06.166

D. Wang, L. Wang, J. Gu, H. Yang, N. Liu, Y. Lin, X. Li, C. Shao. Scutellarin inhibits high glucose-induced and hypoxia-mimetic agent-induced angiogenic effects in human retinal endothelial cells through reactive oxygen species/hypoxia-inducible factor-1a/vascular endothelial growth factor pathway. Journal of Cardiovascular Pharmacology 64 (2014) 218-227. https://doi.org/10.1097/fjc.0000000000000109 DOI: https://doi.org/10.1097/FJC.0000000000000109

H. Chen, Q. Du. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints (2020). http://dx.doi.org/10.20944/preprints202001.0358.v3 DOI: https://doi.org/10.20944/preprints202001.0358.v3

Q.Y. Jia, H.L. Chen, Z. Qi, X.L.N. Zhang, L.Y. Zheng, T.T. Liu, Y. Yuan, L. Yang, C.Y. Wu. Network pharmacology to explore the mechanism of scutellarin in the treatment of brain ischaemia and experimental verification of JAK2/STAT3 signalling pathway. Scientific Reports 13 (2023) 7557 1-11. https://doi.org/10.1038/s41598-023-33156-5 DOI: https://doi.org/10.1038/s41598-023-33156-5

Y. Yuan, H. Zha, P. Rangarajan, E.A. Ling, C. Wu. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neuroscience 15 (2014) 125. https://doi.org/10.1186/s12868-014-0125-3 DOI: https://doi.org/10.1186/s12868-014-0125-3

P. Luo, Z.H. Tan, Z.F. Zhang, H. Zhang, X.F. Liu, Z.J. Mo. Scutellarin isolated from Erigeron multiradiatus inhibits high glucose-mediated vascular inflammation. Yakugaku Zasshi 128 (2008) 1293-1299. https://doi.org/10.1248/yakushi.128.1293 DOI: https://doi.org/10.1248/yakushi.128.1293

L. Long, J. Wang, X. Lu, Y. Xu, S. Zheng, C. Luo, Y. Li. Protective effects of scutellarin on type II diabetes mellitus-induced testicular damages related to reactive oxygen species/Bcl-2/Bax and reactive oxygen species/microcirculation/staving pathway in diabetic rat. Journal of Diabetes Research 2015 (2015) 52530. https://doi.org/10.1155/2015/252530 DOI: https://doi.org/10.1155/2015/252530

Y. Su, W. Liu, L. Ma, X. Liu, Z. Liu, B. Zhu. Scutellarin inhibits translocation of protein kinase C in diabetic thoracic aorta of the rat. Clinical and Experimental Pharmacology and Physiology 39 (2012) 136-140. https://doi.org/10.1111/j.1440-1681.2011.05645.x DOI: https://doi.org/10.1111/j.1440-1681.2011.05645.x

Z. Wang, P. Zhang, Y. Zhao, F. Yu, S. Wang, K. Liu, X. Cheng, J. Shi, Q. He, Y. Xia, L. Cheng. Scutellarin Protects Against Mitochondrial Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation to Attenuate Intervertebral Disc Degeneration. Frontiers in Bioengineering and Biotechnology 10 (2022) 883118. https://doi.org/10.3389/fbioe.2022.883118 DOI: https://doi.org/10.3389/fbioe.2022.883118

H. Xu, S. Zhang. Scutellarin-induced apoptosis in HepG2 hepatocellular carcinoma cells via a STAT3 pathway. Phytotherapy Research 27 (2013) 1524-1528. https://doi.org/10.1002/ptr.4892 DOI: https://doi.org/10.1002/ptr.4892

X. Shi, G. Chen, X. Liu, Y. Qiu, S. Yang, Y. Zhang, X. Fang, C. Zhang, X. Liu. Scutellarein inhibits cancer cell metastasis in vitro and attenuates the development of fibrosarcoma in vivo. International Journal of Molecular Medicine 35 (2015) 31-38. https://doi.org/10.3892/ijmm.2014.1997 DOI: https://doi.org/10.3892/ijmm.2014.1997

C.Y. Li, Q. Wang, X. Wang, G. Li, S. Shen, X. Wei. Scutellarin inhibits the invasive potential of malignant melanoma cells through the suppression epithelial-mesenchymal transition and angiogenesis via the PI3K/Akt/mTOR signaling pathway. European Journal of Pharmacology 858 (2019) 172463. https://doi.org/10.1016/j.ejphar.2019.172463 DOI: https://doi.org/10.1016/j.ejphar.2019.172463

L. Shi, Y. Wu, D. liang LV, L. Feng. Scutellarein selectively targets multiple myeloma cells by increasing mitochondrial superoxide production and activating intrinsic apoptosis pathway. Biomedicine and Pharmacotherapy 109 (2019) 2109-2118. https://doi.org/10.1016/j.biopha.2018.09.024 DOI: https://doi.org/10.1016/j.biopha.2018.09.024

X.P. Sun, L.L. Wan, Q.J. Yang, Y. Huo, Y.L. Han, C. Guo. Scutellarin protects against doxorubicin-induced acute cardiotoxicity and regulates its accumulation in the heart. Archives of Pharmacal Research 40 (2017) 875-883. https://doi.org/10.1007/s12272-017-0907-0 DOI: https://doi.org/10.1007/s12272-017-0907-0

L.L. Lin, A.J. Liu, J.G. Liu, X.H. Yu, L.P. Qin, D.F. Su. Protective effects of scutellarin and breviscapine on brain and heart ischemia in rats. Journal of Cardiovascular Pharmacology 50 (2007) 327-332. https://doi.org/10.1097/fjc.0b013e3180cbd0e7 DOI: https://doi.org/10.1097/FJC.0b013e3180cbd0e7

L. Dai, L. Gu, K. Maeda. Inhibitory effect and mechanism of scutellarin on melanogenesis. Cosmetics 8 (2021) 15. https://doi.org/10.3390/cosmetics8010015 DOI: https://doi.org/10.3390/cosmetics8010015

Q. Chen, C. Shang, M. Han, C. Chen, W. Tang, W. Liu. Inhibitory mechanism of scutellarin on tyrosinase by kinetics, spectroscopy and molecular simulation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 296 (2023) 122644. https://doi.org/10.1016/j.saa.2023.122644 DOI: https://doi.org/10.1016/j.saa.2023.122644

K. Patel, D.K. Patel. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. Journal of Traditional and Complementary Medicine 7 (2017) 360-366. https://doi.org/10.1016/j.jtcme.2016.11.003 DOI: https://doi.org/10.1016/j.jtcme.2016.11.003

M. Han, H. Gao, P. Ju, M. quan Gao, Y. ping Yuan, X. hong Chen, K. li Liu, Y. tao Han, Z. wu Han. Hispidulin inhibits hepatocellular carcinoma growth and metastasis through AMPK and ERK signaling mediated activation of PPARγ. Biomedicine and Pharmacotherapy 103 (2018) 272-283. https://doi.org/10.1016/j.biopha.2018.04.014 DOI: https://doi.org/10.1016/j.biopha.2018.04.014

D.E. Kim, K. jin Min, M.J. Kim, S.H. Kim, T.K. Kwon. Hispidulin inhibits mast cell-mediated allergic inflammation through down-regulation of histamine release and inflammatory cytokines. Molecules 24 (2019) 2131. 10.3390/molecules24112131. DOI: https://doi.org/10.3390/molecules24112131

Y.C. Lin, C.M. Hung, J.C. Tsai, J.C. Lee, Y.L.S. Chen, C.W. Wei, J.Y. Kao, T. Der Way. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). Journal of Agricultural and Food Chemistry 58 (2010) 9511-9517. https://doi.org/10.1021/jf1019533 DOI: https://doi.org/10.1021/jf1019533

J.M. Yang, C.M. Hung, C.N. Fu, J.C. Lee, C.H. Huang, M.H. Yang, C.L. Lin, J.Y. Kao, T. Der Way. Hispidulin sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by AMPK activation leading to Mcl-1 block in translation. Journal of Agricultural and Food Chemistry 58 (2010) 10020-10026. https://doi.org/10.1021/jf102304g DOI: https://doi.org/10.1021/jf102304g

L. He, Y. Wu, L. Lin, J. Wang, Y. Wu, Y. Chen, Z. Yi, M. Liu, X. Pang. Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathway. Cancer Science 102 (2011) 219-225. https://doi.org/10.1111/j.1349-7006.2010.01778.x DOI: https://doi.org/10.1111/j.1349-7006.2010.01778.x

H. Gao, H. Wang, J. Peng. Hispidulin Induces Apoptosis Through Mitochondrial Dysfunction and Inhibition of P13k/Akt Signalling Pathway in HepG2 Cancer Cells. Cell Biochemistry and Biophysics 69 (2014) 27-34. https://doi.org/10.1007/s12013-013-9762-x DOI: https://doi.org/10.1007/s12013-013-9762-x

A. Mouri, H.J. Lee, T. Mamiya, Y. Aoyama, Y. Matsumoto, H. Kubota, W.J. Huang, L.C. Chiou, T. Nabeshima. Hispidulin attenuates the social withdrawal in isolated disrupted-in-schizophrenia-1 mutant and chronic phencyclidine-treated mice. British Journal of Pharmacology 177 (2020) 3210-3224. https://doi.org/10.1111/bph.15043 DOI: https://doi.org/10.1111/bph.15043

D. Kavvadias, P. Sand, K.A. Youdim, M.Z. Qaiser, C. Rice-Evans, R. Baur, E. Sigel, W.D. Rausch, P. Riederer, P. Schreier. The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. British Journal of Pharmacology 142 (2004) 811-820. https://doi.org/10.1038/sj.bjp.0705828 DOI: https://doi.org/10.1038/sj.bjp.0705828

Y.H. Liao, H.J. Lee, W.J. Huang, P.C. Fan, L.C. Chiou. Hispidulin alleviated methamphetamine-induced hyperlocomotion by acting at α6 subunit-containing GABAA receptors in the cerebellum. Psychopharmacology 233 (2016) 3187-3199. https://doi.org/10.1007/s00213-016-4365-z DOI: https://doi.org/10.1007/s00213-016-4365-z

T.Y. Lin, C.W. Lu, S.J. Wang, S.K. Huang. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats. European Journal of Pharmacology 755 (2015) 6-15. https://doi.org/10.1016/j.ejphar.2015.02.041. DOI: https://doi.org/10.1016/j.ejphar.2015.02.041

Y. Wang, A. Wang, H. Alkhalidy, J. Luo, E. Moomaw, A.P. Neilson, D. Liu. Flavone Hispidulin Stimulates Glucagon-Like Peptide-1 Secretion and Ameliorates Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Molecular Nutrition and Food Research 64 (2020) 1900978. https://doi.org/10.1002/mnfr.201900978 DOI: https://doi.org/10.1002/mnfr.201900978

Y. Chen, J. Sun, Z. Zhang, X. Liu, Q. Wang, Y. Yu. The potential effects and mechanisms of hispidulin in the treatment of diabetic retinopathy based on network pharmacology. BMC Complementary Medicine and Therapies 22 (2022) 141 . https://doi.org/10.1186/s12906-022-03593-2 DOI: https://doi.org/10.1186/s12906-022-03593-2

D.K. Patel. Therapeutic Benefit of Salvigenin Against Various forms of Human Disorders Including Cancerous Disorders: Medicinal Properties and Biological Application in the Modern Medicine. Current Chinese Science 1 (2021) 387-395. http://dx.doi.org/10.2174/2210298101666210224100246 DOI: https://doi.org/10.2174/2210298101666210224100246

G. Rafatian, F. Khodagholi, M.M. Farimani, S.B. Abraki, M. Gardaneh. Increase of autophagy and attenuation of apoptosis by Salvigenin promote survival of SH-SY5Y cells following treatment with H2O2. Molecular and Cellular Biochemistry 371 (2012) 9-22. https://doi.org/10.1007/s11010-012-1416-6 DOI: https://doi.org/10.1007/s11010-012-1416-6

H. Edwards, K. Javed, K. Yadev, C. Ara, A.-M. Omer. Therapeutic potential of salvigenin to combat atrazine induced liver toxicity in rats via regulating Nrf-2/Keap-1 and NF-κB pathway. Pesticide Biochemistry and Physiology 202 (2024) 105966. https://doi.org/10.1016/j.pestbp.2024.105966 DOI: https://doi.org/10.1016/j.pestbp.2024.105966

B.S. Uydeş-Doǧan, S. Takir, O. Özdemir, U. Kolak, G. Topçu, A. Ulubelen. The comparison of the relaxant effects of two methoxylated flavones in rat aortic rings. Vascular Pharmacology 43 (2005) 220-226. https://doi.org/10.1016/j.vph.2005.07.002 DOI: https://doi.org/10.1016/j.vph.2005.07.002

S. Noori, Z.M. Hassan, B. Yaghmaei, M. Dolatkhah. Antitumor and immunomodulatory effects of salvigenin on tumor bearing mice. Cellular Immunology 286 (2013) 16-21. https://doi.org/10.1016/j.cellimm.2013.10.005 DOI: https://doi.org/10.1016/j.cellimm.2013.10.005

H. Shao, J. Chen, A. Li, L. Ma, Y. Tang, H. Chen, Y. Chen, J. Liu. Salvigenin Suppresses Hepatocellular Carcinoma Glycolysis and Chemoresistance Through Inactivating the PI3K/AKT/GSK-3β Pathway. Applied Biochemistry and Biotechnology (2023) 5217-5237. https://doi.org/10.1007/s12010-023-04511-z DOI: https://doi.org/10.1007/s12010-023-04511-z

F. Hou, Y. Liu, Y. Cheng, N. Zhang, W. Yan, F. Zhang. Exploring the Mechanism of Scutellaria baicalensis Georgi Efficacy against Oral Squamous Cell Carcinoma Based on Network Pharmacology and Molecular Docking Analysis. Evidence-Based Complementary and Alternative Medicine 2021 (2021) 597586. https://doi.org/10.1155/2021/5597586 DOI: https://doi.org/10.1155/2021/5597586

N.N. Sarvestani, H. Sepehri, L. Delphi, M.M. Farimani. Eupatorin and Salvigenin potentiate doxorubicin-induced apoptosis and cell cycle arrest in HT-29 and SW948 human colon cancer cells. Asian Pacific Journal of Cancer Prevention 19 (2018) 131-139. https://doi.org/10.22034/APJCP.2018.19.1.131

H. Sadeghi, A. Mansourabadi, M. Rezvani, M. Ghobadi, N. Razavi, M. Bagheri. Salvigenin has Potential to Ameliorate Streptozotocin-induced Diabetes Mellitus and Heart Complications in Rats. British Journal of Medicine and Medical Research 15 (2016) 1-12. https://doi.org/10.9734/BJMMR/2016/25156 DOI: https://doi.org/10.9734/BJMMR/2016/25156

E. Serino, A. Chahardoli, N. Badolati, C. Sirignano, F. Jalilian, M. Mojarrab, Z. Farhangi, D. Rigano, M. Stornaiuolo, Y. Shokoohinia, O. Taglialatela-Scafati. Salvigenin, a trimethoxylated flavone from achillea wilhelmsii c. Koch, exerts combined lipid-lowering and mitochondrial stimulatory effects. Antioxidants 10 (2021) 1042. https://doi.org/10.3390/antiox10071042 DOI: https://doi.org/10.3390/antiox10071042

U. Vidhya Rekha. Molecular docking analysis of bioactive compounds from Plectranthus amboinicus with glucokinase. Bioinformation 18 (2022) 261-264. https://doi.org/10.6026/97320630018261 DOI: https://doi.org/10.6026/97320630018261

L. Yao, S. Zhu, W. Liu, Z. Manzoor, M.F. Nisar, M. Li. A comprehensive review of pharmacological and Analytical Aspects of Acacetin. Natural Resources for Human Health 1 (2021) 8-18. https://doi.org/10.53365/nrfhh/141018 DOI: https://doi.org/10.53365/nrfhh/141018

R.B. Semwal, D.K. Semwal, S. Combrinck, J. Trill, S. Gibbons, A. Viljoen. Acacetin—A simple flavone exhibiting diverse pharmacological activities. Phytochemistry Letters 32 (2019) 56-65. https://doi.org/10.1016/j.phytol.2019.04.021 DOI: https://doi.org/10.1016/j.phytol.2019.04.021

Y. Wang, L. Liu, M. Ge, J. Cui, X. Dong, Y. Shao. Acacetin attenuates the pancreatic and hepatorenal dysfunction in type 2 diabetic rats induced by high-fat diet combined with streptozotocin. Journal of Natural Medicines 77 (2023) 446-454. https://doi.org/10.1007/s11418-022-01675-6 DOI: https://doi.org/10.1007/s11418-022-01675-6

N. Wang, Q. Gao, J. Shi, C. Yulan, W. Ji, X. Sheng, R. Zhang. Acacetin antagonized lipotoxicity in pancreatic β-cells via ameliorating oxidative stress and endoplasmic reticulum stress. Molecular Biology Reports (2022) 8727-8740. https://doi.org/10.1007/s11033-022-07717-2 DOI: https://doi.org/10.1007/s11033-022-07717-2

W.M. Han, X.C. Chen, G.R. Li, Y. Wang. Acacetin Protects Against High Glucose-Induced Endothelial Cells Injury by Preserving Mitochondrial Function via Activating Sirt1/Sirt3/AMPK Signals. Frontiers in Pharmacology 11 (2020) 607796. https://doi.org/10.3389/fphar.2020.607796 DOI: https://doi.org/10.3389/fphar.2020.607796

H.G. Kim, M.S. Ju, S.K. Ha, H. Lee, H. Lee, S.Y. Kim, M.S. Oh. Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biological and Pharmaceutical Bulletin 35 (2012) 1287-1294. https://doi.org/10.1248/bpb.b12-00127 DOI: https://doi.org/10.1248/bpb.b12-00127

J. Liu, Y.G. Wang, S.Y. Yu, C.E. Li, S.M. Kang. Protective effect of acacetin in human periodontal ligament cells via regulation of autophagy and inflammation. Pharmazie 75 (2020) 436-439. https://pubmed.ncbi.nlm.nih.gov/32797769/

M.H. Pan, C.S. Lai, P.C. Hsu, Y.J. Wang. Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species. Journal of Agricultural and Food Chemistry 53 (2005) 620-630. https://doi.org/10.1021/jf048430m DOI: https://doi.org/10.1021/jf048430m

A.A. Jones, S. Gehler. Acacetin and Pinostrobin Inhibit Malignant Breast Epithelial Cell Adhesion and Focal Adhesion Formation to Attenuate Cell Migration. Integrative Cancer Therapies 19 (2020). https://doi.org/10.1177/1534735420918945 DOI: https://doi.org/10.1177/1534735420918945

S. Yun, Y.J. Lee, J. Choi, N.D. Kim, D.C. Han, B.M. Kwon. Acacetin inhibits the growth of stat3-activated du145 prostate cancer cells by directly binding to signal transducer and activator of transcription 3 (Stat3). Molecules 26 (2021) 6204. https://doi.org/10.3390/molecules26206204 DOI: https://doi.org/10.3390/molecules26206204

Y. Fong, K.H. Shen, T.A. Chiang, Y.W. Shih. Acacetin inhibits TPA-induced MMP-2 and u-PA expressions of human lung cancer cells through inactivating JNK signaling pathway and reducing binding activities of NF-κB and AP-1. Journal of Food Science 75 (2010) H30-H38. https://doi.org/10.1111/j.1750-3841.2009.01438.x DOI: https://doi.org/10.1111/j.1750-3841.2009.01438.x

H.W. Zhang, J.J. Hu, R.Q. Fu, X. Liu, Y.H. Zhang, J. Li, L. Liu, Y.N. Li, Q. Deng, Q.S. Luo, Q. Ouyang, N. Gao. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Scientific Reports 8 (2018) 11255. https://doi.org/10.1038/s41598-018-29308-7 DOI: https://doi.org/10.1038/s41598-018-29308-7

T.A. Zughaibi, M. Suhail, M. Tarique, S. Tabrez. Targeting pi3k/akt/mtor pathway by different flavonoids: A cancer chemopreventive approach. International Journal of Molecular Sciences 22 (2021) 12455. https://doi.org/10.3390/ijms222212455 DOI: https://doi.org/10.3390/ijms222212455

T. Cheriet, B. Ben-Bachir, O. Thamri, R. Seghiri, I. Mancini. Isolation and biological properties of the natural flavonoids pectolinarin and pectolinarigenin—a review. Antibiotics 9 (2020) 417. https://doi.org/10.3390/antibiotics9070417 DOI: https://doi.org/10.3390/antibiotics9070417

N. Patel, R. Kulshrestha, A.A. Bhat, R. Mishra, N. Singla, R. Gilhotra, G. Gupta. Pectolinarigenin and its derivatives: Bridging the gap between chemical properties and pharmacological applications. Pharmacological Research - Modern Chinese Medicine 10 (2024) 100378. https://doi.org/10.1016/j.prmcm.2024.100378 DOI: https://doi.org/10.1016/j.prmcm.2024.100378

M. Shiraiwa, T. Kitakaze, Y. Yamashita, Y. Ukawa, K. Mukai, H. Ashida. Pectolinarigenin Induces Antioxidant Enzymes through Nrf2/ARE Pathway in HepG2 Cells. Antioxidants 11 (2022) 675. https://doi.org/10.3390/antiox11040675 DOI: https://doi.org/10.3390/antiox11040675

Q.Q. Pang, J.H. Kim, H.Y. Kim, J.H. Kim, E.J. Cho. Protective Effects and Mechanisms of Pectolinarin against H2O2-Induced Oxidative Stress in SH-SY5Y Neuronal Cells. Molecules 28 (2023) 5826. https://doi.org/10.3390/molecules28155826 DOI: https://doi.org/10.3390/molecules28155826

T. Wu, X. Dong, D. Yu, Z. Shen, J. Yu, S. Yan. Natural product pectolinarigenin inhibits proliferation, induces apoptosis, and causes G2/M phase arrest of HCC via PI3K/AKT/mTOR/ERK signaling pathway. OncoTargets and Therapy 11 (2018) 8633-8642. https://doi.org/10.2147/ott.s186186 DOI: https://doi.org/10.2147/OTT.S186186

C. Wang, Y. Cheng, H. Liu, Y. Xu, H. Peng, J. Lang, J. Liao, H. Liu, H. Liu, J. Fan. Pectolinarigenin Suppresses the Tumor Growth in Nasopharyngeal Carcinoma. Cellular Physiology and Biochemistry 39 (2016) 1795-1803. https://doi.org/10.1159/000447879 DOI: https://doi.org/10.1159/000447879

B. Zhou, Z. Hong, H. Zheng, M. Chen, L. Shi, C. Zhao, H. Qian. Pectolinarigenin suppresses pancreatic cancer cell growth by inhibiting STAT3 Signaling. Natural Product Communications 12 (2017) 1861-1864. https://doi.org/10.1177/1934578X1701201212 DOI: https://doi.org/10.1177/1934578X1701201212

M. Lu, Q. Kong, X. Xu, H. Lu, Z. Lu, W. Yu, B. Zuo, J. Su, R. Guo. Pectolinarigenin - A flavonoid compound from Cirsium Japonicum with potential anti-proliferation activity in MCF-7 breast cancer cell. Tropical Journal of Pharmaceutical Research 13 (2014) 225-228. https://doi.org/10.4314/tjpr.v13i2.9 DOI: https://doi.org/10.4314/tjpr.v13i2.9

H.J. Lee, V.V.G. Saralamma, S.M. Kim, S.E. Ha, S. Raha, W.S. Lee, E.H. Kim, S.J. Lee, J.D. Heo, G.S. Kim. Pectolinarigenin induced cell cycle arrest, autophagy, and apoptosis in gastric cancer cell via PI3K/AKT/mTOR signaling pathway. Nutrients 10 (2018) 1043. https://doi.org/10.3390/nu10081043. DOI: https://doi.org/10.3390/nu10081043

S. Lee, D.H. Lee, J.C. Kim, B.H. Um, S.H. Sung, L.S. Jeong, Y.K. Kim, S.N. Kim. Pectolinarigenin, an aglycone of pectolinarin, has more potent inhibitory activities on melanogenesis than pectolinarin. Biochemical and Biophysical Research Communications 493 (2017) 765-772. https://doi.org/10.1016/j.bbrc.2017.08.106 DOI: https://doi.org/10.1016/j.bbrc.2017.08.106

Y. Deng, Q. Zhang, Y. Li, L. Wang, S. Yang, X. Chen, C. Gan, F. He, T. Ye, W. Yin. Pectolinarigenin inhibits cell viability, migration and invasion and induces apoptosis via a ROS-mitochondrial apoptotic pathway in melanoma cells. Oncology Letters 20 (2020) 116. https://doi.org/10.3892/ol.2020.11977 DOI: https://doi.org/10.3892/ol.2020.11977

S.S. Choi, S.H. Lee, K.A. Lee. A Comparative Study of Hesperetin, Hesperidin and Hesperidin Glucoside: Antioxidant, Anti-Inflammatory, and Antibacterial Activities In Vitro. Antioxidants 11 (2022) 1618. https://doi.org/10.3390/antiox11081618 DOI: https://doi.org/10.3390/antiox11081618

S. Najjar Khalilabad, A. Mirzaei, V.R. Askari, A. Mirzaei, R. Khademi, V. Baradaran Rahimi. How hesperidin and Hesperetin, as promising food Supplements, combat cardiovascular Diseases: A systematic review from bench to bed. Journal of Functional Foods 120 (2024) 106358. https://doi.org/10.1016/j.jff.2024.106358 DOI: https://doi.org/10.1016/j.jff.2024.106358

K. Wdowiak, J. Walkowiak, R. Pietrzak, A. Bazan-Woźniak, J. Cielecka-Piontek. Bioavailability of Hesperidin and Its Aglycone Hesperetin—Compounds Found in Citrus Fruits as A Parameter Conditioning the Pro-Health Potential (Neuroprotective and Antidiabetic Activity)—Mini-Review. Nutrients 14 (2022) 2647. https://doi.org/10.3390/nu14132647 DOI: https://doi.org/10.3390/nu14132647

H. Parhiz, A. Roohbakhsh, F. Soltani, R. Rezaee, M. Iranshahi. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytotherapy Research 29 (2015) 323-331. https://doi.org/10.1002/ptr.5256 DOI: https://doi.org/10.1002/ptr.5256

J.Y. Kim, K.J. Jung, J.S. Choi, H.Y. Chung. Hesperetin: A potent antioxidant against peroxynitrite. Free Radical Research 38 (2004) 761-769. https://doi.org/10.1080/10715760410001713844 DOI: https://doi.org/10.1080/10715760410001713844

S. Kamaraj, P. Anandakumar, S. Jagan, G. Ramakrishnan, T. Devaki. Modulatory effect of hesperidin on benzo(a)pyrene induced experimental lung carcinogenesis with reference to COX-2, MMP-2 and MMP-9. European Journal of Pharmacology 649 (2010) 320-327. https://doi.org/10.1016/j.ejphar.2010.09.017 DOI: https://doi.org/10.1016/j.ejphar.2010.09.017

J. Elavarasan, P. Velusamy, T. Ganesan, S.K. Ramakrishnan, D. Rajasekaran, K. Periandavan. Hesperidin-mediated expression of Nrf2 and upregulation of antioxidant status in senescent rat heart. Journal of Pharmacy and Pharmacology 64 (2012) 1472-1482. https://doi.org/10.1111/j.2042-7158.2012.01512.x DOI: https://doi.org/10.1111/j.2042-7158.2012.01512.x

M.C. Chen, Y.I.Y.I. Ye, J.I. Guang, L.I.U. Jian-Wen. Hesperidin upregulates heme oxygenase-1 to attenuate hydrogen peroxide-induced cell damage in hepatic L02 cells. Journal of Agricultural and Food Chemistry 58 (2010) 3330-3335. https://doi.org/10.1021/jf904549s DOI: https://doi.org/10.1021/jf904549s

D. Li, S. Mitsuhashi, M. Ubukata. Protective effects of hesperidin derivatives and their stereoisomers against advanced glycation end-products formation. Pharmaceutical Biology 50 (2012) 1531-1535. https://doi.org/10.3109/13880209.2012.694106 DOI: https://doi.org/10.3109/13880209.2012.694106

J.A. Vinson, T.B. Howard. Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. Journal of Nutritional Biochemistry 7 (1996) 659-663. https://doi.org/10.1016/S0955-2863(96)00128-3 DOI: https://doi.org/10.1016/S0955-2863(96)00128-3

X. Shi, S. Liao, H. Mi, C. Guo, D. Qi, F. Li, C. Zhang, Z. Yang. Hesperidin prevents retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Molecules 17 (2012) 12868-12881. https://doi.org/10.3390/molecules171112868 DOI: https://doi.org/10.3390/molecules171112868

Y. Gong, X.Y. Qin, Y.Y. Zhai, H. Hao, J. Lee, Y.D. Park. Inhibitory effect of hesperetin on α-glucosidase: Molecular dynamics simulation integrating inhibition kinetics. International Journal of Biological Macromolecules 101 (2017) 32-39. https://doi.org/10.1016/j.ijbiomac.2017.03.072 DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.072

S. Akiyama, S.I. Katsumata, K. Suzuki, Y. Nakaya, Y. Ishimi, M. Uehara. Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Bioscience, Biotechnology and Biochemistry 73 (2009) 2779-2782. https://doi.org/10.1271/bbb.90576 DOI: https://doi.org/10.1271/bbb.90576

Y. Yang, J. Wolfram, H. Shen, X. Fang, M. Ferrari. Hesperetin: An inhibitor of the transforming growth factor-β (TGF-β) signaling pathway. European Journal of Medicinal Chemistry 58 (2012) 390-395. https://doi.org/10.1016/j.ejmech.2012.10.028 DOI: https://doi.org/10.1016/j.ejmech.2012.10.028

S. Aranganathan, N. Nalini. Efficacy of the potential chemopreventive agent, hesperetin (citrus flavanone), on 1,2-dimethylhydrazine induced colon carcinogenesis. Food and Chemical Toxicology 47 (2009) 2594-2600. https://doi.org/10.1016/j.fct.2009.07.019 DOI: https://doi.org/10.1016/j.fct.2009.07.019

N. Nalini, S. Aranganathan, J. Kabalimurthy. Chemopreventive efficacy of hesperetin (citrus flavonone) against 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Toxicology Mechanisms and Methods 22 (2012) 397-408. https://doi.org/10.3109/15376516.2012.673092 DOI: https://doi.org/10.3109/15376516.2012.673092

G. Sivagami, R. Vinothkumar, C.P. Preethy, A. Riyasdeen, M.A. Akbarsha, V.P. Menon, N. Nalini. Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line - A comparative study. Food and Chemical Toxicology 50 (2012) 660-671. https://doi.org/10.1016/j.fct.2011.11.038 DOI: https://doi.org/10.1016/j.fct.2011.11.038

E.J. Choi. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: Involvement of CDK4 and p21. Nutrition and Cancer 59 (2007) 115-119. https://doi.org/10.1080/01635580701419030 DOI: https://doi.org/10.1080/01635580701419030

L. Ye, F.L. Chan, S. Chen, L.K. Leung. The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. Journal of Nutritional Biochemistry 23 (2012) 1230-1237. https://doi.org/10.1016/j.jnutbio.2011.07.003 DOI: https://doi.org/10.1016/j.jnutbio.2011.07.003

J.A. van Meeuwen, S. Nijmeijer, T. Mutarapat, S. Ruchirawat, P.C. de Jong, A.H. Piersma, M. van den Berg. Aromatase inhibition by synthetic lactones and flavonoids in human placental microsomes and breast fibroblasts - A comparative study. Toxicology and Applied Pharmacology 228 (2008) 269-276. https://doi.org/10.1016/j.taap.2007.12.007 DOI: https://doi.org/10.1016/j.taap.2007.12.007

Y.C. Huang, K.C. Liu, Y.L. Chiou. Melanogenesis of murine melanoma cells induced by hesperetin, a Citrus hydrolysate-derived flavonoid. Food and Chemical Toxicology 50 (2012) 653-659. https://doi.org/10.1016/j.fct.2012.01.012 DOI: https://doi.org/10.1016/j.fct.2012.01.012

Y.X. Si, Z.J. Wang, D. Park, H.Y. Chung, S.F. Wang, L. Yan, J.M. Yang, G.Y. Qian, S.J. Yin, Y.D. Park. Effect of hesperetin on tyrosinase: Inhibition kinetics integrated computational simulation study. International Journal of Biological Macromolecules 50 (2012) 257-262. https://doi.org/10.1016/j.ijbiomac.2011.11.001 DOI: https://doi.org/10.1016/j.ijbiomac.2011.11.001

X. Hong, X. Luo, L. Wang, D. Gong, G. Zhang. New Insights into the Inhibition of Hesperetin on Polyphenol Oxidase: Inhibitory Kinetics, Binding Characteristics, Conformational Change and Computational Simulation. Foods 12 (2023) 905. https://doi.org/10.3390/foods12040905 DOI: https://doi.org/10.3390/foods12040905

P.K. Agrawal, C. Agrawal, G. Blunden. Pharmacological Significance of Hesperidin and Hesperetin, Two Citrus Flavonoids, as Promising Antiviral Compounds for Prophylaxis Against and Combating COVID-19. Natural Product Communications 16(10) (2021). https://doi.org/10.1177/1934578X211042540 DOI: https://doi.org/10.1177/1934578X211042540

N. Tomic, L. Pojskic, A. Kalajdzic, J. Ramic, N.L. Kadric, T. Ikanovic, M. Maksimovic, N. Pojskic. Screening of Preferential Binding Affinity of Selected Natural Compounds to SARS-CoV-2 Proteins Using in Silico Methods. Eurasian Journal of Medicine and Oncology 4 (2020) 319-323. https://dx.doi.org/10.14744/ejmo.2020.72548 DOI: https://doi.org/10.14744/ejmo.2020.72548

C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li, M. Zheng, L. Chen, H. Li. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B 10 (2020) 766-788. https://doi.org/10.1016/j.apsb.2020.02.008 DOI: https://doi.org/10.1016/j.apsb.2020.02.008

Y. Lin, R. Shi, X. Wang, H.-M. Shen. Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Current Cancer Drug Targets 8 (2008) 634-646. http://dx.doi.org/10.2174/156800908786241050 DOI: https://doi.org/10.2174/156800908786241050

M. Imran, A. Rauf, T. Abu-Izneid, M. Nadeem, M.A. Shariati, I.A. Khan, A. Imran, I.E. Orhan, M. Rizwan, M. Atif, T.A. Gondal, M.S. Mubarak. Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine and Pharmacotherapy 112 (2019) 108612. https://doi.org/10.1016/j.biopha.2019.108612 DOI: https://doi.org/10.1016/j.biopha.2019.108612

R. Sangeetha. Luteolin in the management of type 2 diabetes mellitus. Current Research in Nutrition and Food Science 7 (2019) 393-398. http://dx.doi.org/10.12944/CRNFSJ.7.2.09 DOI: https://doi.org/10.12944/CRNFSJ.7.2.09

D. Kempuraj, R. Thangavel, D.D. Kempuraj, M.E. Ahmed, G.P. Selvakumar, S.P. Raikwar, S.A. Zaheer, S.S. Iyer, R. Govindarajan, P.N. Chandrasekaran, A. Zaheer. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. BioFactors 47 (2021) 190-197. https://doi.org/10.1002/biof.1687 DOI: https://doi.org/10.1002/biof.1687

M. Leopoldini, I. Prieto Pitarch, N. Russo, M. Toscano. Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. Journal of Physical Chemistry A 108 (2004) 92-96. https://pubs.acs.org/doi/10.1021/jp035901j DOI: https://doi.org/10.1021/jp035901j

K. Horváthová, L. Novotný, D. Tóthová, A. Vachálková. Determination of free radical scavenging activity of quercetin, rutin, luteolin and apigenin in H2O2-treated human ML cells K562. Neoplasma 51 (2004). 395-399. https://pubmed.ncbi.nlm.nih.gov/15640946/

C.S. Huang, C.K. Lii, A.H. Lin, Y.W. Yeh, H.T. Yao, C.C. Li, T.S. Wang, H.W. Chen. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Archives of Toxicology 87 (2013) 167-178. https://doi.org/10.1007/s00204-012-0913-4 DOI: https://doi.org/10.1007/s00204-012-0913-4

J.S. Kim, C.S. Kwon, K.H. Son. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Bioscience, Biotechnology and Biochemistry 64 (2000) 2458-2461. https://doi.org/10.1271/bbb.64.2458 DOI: https://doi.org/10.1271/bbb.64.2458

D. Ahmed, V. Kumar, M. Sharma, A. Verma. Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark. BMC Complementary and Alternative Medicine 14 (2014) 155. https://doi.org/10.1186/1472-6882-14-155 DOI: https://doi.org/10.1186/1472-6882-14-155

J. jian Kou, J. zhuo Shi, Y. yang He, J. jiao Hao, H. yu Zhang, D. mei Luo, J. ke Song, Y. Yan, X. mei Xie, G. hua Du, X. bin Pang. Luteolin alleviates cognitive impairment in Alzheimer’s disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation. Acta Pharmacologica Sinica 43 (2022) 840-849. https://doi.org/10.1038/s41401-021-00702-8 DOI: https://doi.org/10.1038/s41401-021-00702-8

Z.H. Zhang, J.Q. Liu, C. Di Hu, X.T. Zhao, F.Y. Qin, Z. Zhuang, X.S. Zhang. Luteolin Confers Cerebroprotection after Subarachnoid Hemorrhage by Suppression of NLPR3 Inflammasome Activation through Nrf2-Dependent Pathway. Oxidative Medicine and Cellular Longevity 2021 (2021) 838101. https://doi.org/10.1155/2021/5838101 DOI: https://doi.org/10.1155/2021/5838101

Y. Yang, X. Tan, J. Xu, T. Wang, T. Liang, X. Xu, C. Ma, Z. Xu, W. Wang, H. Li, H. Shen, X. Li, W. Dong, G. Chen. Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-κB pathway after intracerebral hemorrhage. Biomedicine and Pharmacotherapy 126 (2020) 110044. https://doi.org/10.1016/j.biopha.2020.110044 DOI: https://doi.org/10.1016/j.biopha.2020.110044

J. Schomberg, Z. Wang, A. Farhat, K.L. Guo, J. Xie, Z. Zhou, J. Liu, B. Kovacs, F. Liu-Smith. Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS. Biochemical Pharmacology 177 (2020) 114025. https://doi.org/10.1016/j.bcp.2020.114025 DOI: https://doi.org/10.1016/j.bcp.2020.114025

L. Zhang, X. Zhao, G.J. Tao, J. Chen, Z.P. Zheng. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis. Food Chemistry 223 (2017) 40-48. https://doi.org/10.1016/j.foodchem.2016.12.017 DOI: https://doi.org/10.1016/j.foodchem.2016.12.017

K. Selvendiran, H. Koga, T. Ueno, T. Yoshida, M. Maeyama, T. Torimura, H. Yano, M. Kojiro, M. Sata. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: An implication for the antitumor potential of flavonoids. Cancer Research 66 (2006) 4826-4834. https://doi.org/10.1158/0008-5472.can-05-4062 DOI: https://doi.org/10.1158/0008-5472.CAN-05-4062

P. Chen, J.Y. Zhang, B.B. Sha, Y.E. Ma, T. Hu, Y.C. Ma, H. Sun, J.X. Shi, Z.M. Dong, P. Li. Luteolin inhibits cell proliferation and induces cell apoptosis via down-regulation of mitochondrial membrane potential in esophageal carcinoma cells EC1 and KYSE450. Oncotarget 8 (2017) 27471-27480. https://doi.org/10.18632/oncotarget.15832 DOI: https://doi.org/10.18632/oncotarget.15832

D.K. Patel. Protective Role of Eupafolin against Tumor, Inflammation, Melanogenesis, Viral Disease and Renal Injury: Pharmacological and Analytical Aspects through Scientific Data Analysis. Current Chinese Science 2 (2022) 143-151. http://dx.doi.org/10.2174/2210298102666220302094321 DOI: https://doi.org/10.2174/2210298102666220302094321

C.C. Chen, M.W. Lin, C.J. Liang, S.H. Wang. The anti-inflammatory effects and mechanisms of eupafolin in lipopolysaccharide-induced inflammatory responses in RAW264.7 Macrophages. PLoS ONE 11 (2016) e0158662. https://doi.org/10.1371/journal.pone.0158662 DOI: https://doi.org/10.1371/journal.pone.0158662

H. Jiang, D. Wu, D. Xu, H. Yu, Z. Zhao, D. Ma, J. Jin. Eupafolin exhibits potent anti-angiogenic and antitumor activity in hepatocellular carcinoma. International Journal of Biological Sciences 13 (2017) 701-711. https://doi.org/10.7150/ijbs.17534 DOI: https://doi.org/10.7150/ijbs.17534

K. Liu, C. Park, H. Chen, J. Hwang, N.R. Thimmegowda, E.Y. Bae, K.W. Lee, H.G. Kim, H. Liu, N.K. Soung, C. Peng, J.H. Jang, K.E. Kim, J.S. Ahn, A.M. Bode, Z. Dong, B.Y. Kim, Z. Dong. Eupafolin suppresses prostate cancer by targeting phosphatidylinositol 3-kinase-mediated Akt signaling. Molecular Carcinogenesis 54 (2015) 751-760. https://doi.org/10.1002/mc.22139 DOI: https://doi.org/10.1002/mc.22139

K.S. Chung, J.H. Choi, N.I. Back, M.S. Choi, E.K. Kang, H.G. Chung, T.S. Jeong, K.T. Lee. Eupafolin, a flavonoid isolated from Artemisia princeps, induced apoptosis in human cervical adenocarcinoma HeLa cells. Molecular Nutrition and Food Research 54 (2010) 1318-1328. https://doi.org/10.1002/mnfr.200900305 DOI: https://doi.org/10.1002/mnfr.200900305

Z. Chen, L.Q. Cheng. Eupafolin induces autophagy and apoptosis in B-cell non-Hodgkin lymphomas. Journal of Pharmacy and Pharmacology 73 (2021) 241-246. https://doi.org/10.1093/jpp/rgaa011 DOI: https://doi.org/10.1093/jpp/rgaa011

J. Xu, T. Zheng, C. Zhao, X. Huang, W. Du. Resistance of nepetin and its analogs on the fibril formation of human islet amyloid polypeptide. International Journal of Biological Macromolecules 166 (2021) 435-447. https://doi.org/10.1016/j.ijbiomac.2020.10.202. DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.202

M. Alrouji, H.M. Al-Kuraishy, A.I. Al-Gareeb, A. Alexiou, M. Papadakis, H.M. Saad, G.E.S. Batiha. The potential role of human islet amyloid polypeptide in type 2 diabetes mellitus and Alzheimer’s diseases. Diabetology and Metabolic Syndrome 15 (2023) 101. https://doi.org/10.1186/s13098-023-01082-1 DOI: https://doi.org/10.1186/s13098-023-01082-1

X. Wang, J. Yang, H. Li, S. Shi, X. Peng. Mechanistic study and synergistic effect on inhibition of α-amylase by structurally similar flavonoids. Journal of Molecular Liquids 360 (2022) 119485. https://doi.org/10.1016/j.molliq.2022.119485 DOI: https://doi.org/10.1016/j.molliq.2022.119485

H.H. Ko, Y.C. Chiang, M.H. Tsai, C.J. Liang, L.F. Hsu, S.Y. Li, M.C. Wang, F.L. Yen, C.W. Lee. Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: Role of MAPK and Akt pathways. Journal of Ethnopharmacology 151 (2014) 386-393. https://doi.org/10.1016/j.jep.2013.10.054 DOI: https://doi.org/10.1016/j.jep.2013.10.054

Downloads

Published

10-12-2024

Issue

Section

Pharmaceutics

How to Cite

Flavonoids from Clerodendrum genus and their biological activities : Review article. (2024). ADMET and DMPK, 12(6), 843-879. https://doi.org/10.5599/admet.2442

Funding data

Similar Articles

1-10 of 143

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)