Electrochemical sensors for anticancer drugs used in the targeted therapy of chronic myeloid leukaemia
Review article
DOI:
https://doi.org/10.5599/admet.2825Keywords:
Imatinib, dasatinib, nilotinib, bosutinib, ponatinib, asciminib, tyrosine kinase inhibitors, clinical analysis, therapeutic drug monitoring, electroanalysisAbstract
Background and purpose: Treatment of chronic myeloid leukaemia includes targeted therapy with tyrosine kinase inhibitors (TKIs): imatinib, dasatinib, nilotinib, bosutinib, ponatinib, and asciminib. This review aims to prove that electrochemical sensors provide a reliable alternative to the conventional analytical methods for highly sensitive and cost-effective assay of TKIs in pharmaceutical formulations and biofluids. These platforms have significant advantages in fast detection and portability because they could be designed as miniaturized hand-held devices suitable for real-time point-of-care analysis, providing quick results for enabling personalized therapeutic drug monitoring. Experimental approach: The paper covers recent developments in substrate materials, various electrode designs, the advantages, and limitations of sensors for TKIs, encompassing both basic and applied research. Key results: This is a pioneering study that provides a general review on emerging trends, technologies, and practical applications of electrochemical sensors for TKIs analysis. The article provides researchers with a clear introduction and concise guide to the design and application of electrochemical sensors in the clinical analysis of TKIs. Conclusion: The review is intended to serve as a valuable resource for researchers in navigating the latest developments in TKIs' electrochemical sensing platforms. The fast response, high sensitivities and satisfactory recoveries obtained in blood serum and urine samples show the potential for application of the proposed electroanalytical systems in clinical analysis and optimization of chemotherapeutic treatments.
Downloads
References
[1] E. Jabbour, H. Kantarjian. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. American Journal of Hematology 95 (2020) 691-709. https://doi.org/10.1002/ajh.25792 DOI: https://doi.org/10.1002/ajh.25792
[2] M. El-Tanani, H. Nsairat, I.I. Matalka, Y.F. Lee, M. Rizzo, A.A. Aljabali, V. Mishra, Y. Mishra, A. Hromić-Jahjefendić, M.M. Tambuwala. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathology - Research and Practice 254 (2024) 155161. https://doi.org/10.1016/j.prp.2024.155161 DOI: https://doi.org/10.1016/j.prp.2024.155161
[3] P. Ernst, J. Rinke, G.N. Franke, F. Dicker, T. Haferlach, T. Ernst, A. Hochhaus. Treatment-free remission after third-line therapy with asciminib in chronic myeloid leukemia with an atypical e19a2 BCR::ABL1 transcript and T315I mutation. Leukemia 38 (2024) 2037-2040. https://doi.org/10.1038/s41375-024-02327-2 DOI: https://doi.org/10.1038/s41375-024-02327-2
[4] G. Janani, A. Girigoswami, K. Girigoswami. Supremacy of nanoparticles in the therapy of chronic myelogenous leukemia. ADMET and DMPK 11(4) (2023) 499-511. https://doi.org/10.5599/admet.2013 DOI: https://doi.org/10.5599/admet.2013
[5] Y.-l. Pan, S.-x. Zeng, R.-r. Hao, M.-h. Liang, Z.-r. Shen, W.-h. Huang. The progress of small-molecules and degraders against BCR-ABL for the treatment of CML. European Journal of Medicinal Chemistry 238 (2022) 114442. https://doi.org/10.1016/j.ejmech.2022.114442 DOI: https://doi.org/10.1016/j.ejmech.2022.114442
[6] L. Pérez-Lamas, A. Luna, C. Boque, B. Xicoy, P. Giraldo, R. Pérez López, C. Ruiz Nuño, N. De Las Heras, E. Mora Casterá, J. López Marín, A. Segura Díaz, V. Gómez, P. Vélez Tenza, M. Sierra Pacho, J.A. Vera Goñi, M. Moreno Vega, A. Alvarez-Larrán, M. Cortés, M. Pérez Encinas, P. Carrascosa Mastell, A. Angona, A. Rosell, S. Lakhwani, M. Colorado, E. Ramila, C. Cervero, B. Cuevas, L. Villalón Blanco, R. de Paz, A. Paz Coll, M.J. Fernández, L. Felipe Casado, J.M. Alonso-Domínguez, M.M. Anguita Arance, A. Salamanca Cuenca, A. Jiménez-Velasco, S.O. Prendes, M. Santaliestra, M.J. Lis Chulvi, J.C. Hernández-Boluda, V. García-Gutiérrez. Toxicity of Asciminib in Real Clinical Practice: Analysis of Side Effects and Cross-Toxicity with Tyrosine Kinase Inhibitors. Cancers 15 (2023) 1045. https://doi.org/10.3390/cancers15041045 DOI: https://doi.org/10.3390/cancers15041045
[7] R. Roskoski. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacological Research 200 (2024) 107059. https://doi.org/10.1016/j.phrs.2024.107059 DOI: https://doi.org/10.1016/j.phrs.2024.107059
[8] K. Morita, K. Sasaki. Current status and novel strategy of CML. International journal of hematology 113(5) (2021) 624-631. https://doi.org/10.1007/s12185-021-03127-5 DOI: https://doi.org/10.1007/s12185-021-03127-5
[9] E. Jabbour, H. Kantarjian. Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. American Journal of Hematology 97(9) (2022) 1236-1256. https://doi.org/10.1002/ajh.26642
[10] A. Hochhaus, M. Baccarani, R.T. Silver, C. Schiffer, J.F. Apperley, F. Cervantes, R.E. Clark, J.E. Cortes, M.W. Deininger, F. Guilhot, H. Hjorth-Hansen, T.P. Hughes, J.J.W.M. Janssen, H.M. Kantarjian, D.W. Kim, R.A. Larson, J.H. Lipton, F.X. Mahon, J. Mayer, F. Nicolini, D. Niederwieser, F. Pane, J.P. Radich, D. Rea, J. Richter, G. Rosti, P. Rousselot, G. Saglio, S. Saußele, S. Soverini, J.L. Steegmann, A. Turkina, A. Zaritskey, R. Hehlmann. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 34(4) (2020) 966-984. https://doi.org/10.1038/s41375-020-0776-2
[11] G.P. Amarante-Mendes, A. Rana, T.S. Datoguia, N. Hamerschlak, G. Brumatti. BCR-ABL1 Tyrosine Kinase Complex Signaling Transduction: Challenges to Overcome Resistance in Chronic Myeloid Leukemia. Pharmaceutics 14 (2022) 215. https://doi.org/10.3390/pharmaceutics14010215 DOI: https://doi.org/10.3390/pharmaceutics14010215
[12] D. Réa, T.P. Hughes. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Critical Reviews in Oncology/Hematology 171 (2022) 103580. https://doi.org/10.1016/j.critrevonc.2022.103580 DOI: https://doi.org/10.1016/j.critrevonc.2022.103580
[13] N. Okamoto, K. Yagi, S. Imawaka, M. Takaoka, F. Aizawa, T. Niimura, M. Goda, K. Miyata, K. Kawada, Y. Izawa-Ishizawa, S. Sakaguchi, K. Ishizawa. Asciminib, a novel allosteric inhibitor of BCR-ABL1, shows synergistic effects when used in combination with imatinib with or without drug resistance. Pharmacology Research & Perspectives 12(4) (2024) e1214. https://doi.org/10.1002/prp2.1214 DOI: https://doi.org/10.1002/prp2.1214
[14] D. Réa, M.J. Mauro, C. Boquimpani, Y. Minami, E. Lomaia, S. Voloshin, A. Turkina, D.W. Kim, J.F. Apperley, A. Abdo, L.M. Fogliatto, D.D.H. Kim, P. le Coutre, S. Saussele, M. Annunziata, T.P. Hughes, N. Chaudhri, K. Sasaki, L. Chee, V. García-Gutiérrez, J.E. Cortes, P. Aimone, A. Allepuz, S. Quenet, V. Bedoucha, A. Hochhaus. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood 138(21) (2021) 2031-2041. https://doi.org/10.1182/blood.2020009984 DOI: https://doi.org/10.1182/blood.2020009984
[15] Q. Jiang, Z. Li, Y. Qin, W. Li, N. Xu, B. Liu, Y. Zhang, L. Meng, H. Zhu, X. Du, S. Chen, Y. Liang, Y. Hu, X. Liu, Y. Song, L. Men, Z. Chen, Q. Niu, H. Wang, M. Lu, D. Yang, Y. Zhai, X. Huang. Olverembatinib (HQP1351), a well-tolerated and effective tyrosine kinase inhibitor for patients with T315I-mutated chronic myeloid leukemia: results of an open-label, multicenter phase 1/2 trial. Journal of Hematology & Oncology 15 (2022) 113. https://doi.org/10.1186/s13045-022-01334-z DOI: https://doi.org/10.1186/s13045-022-01334-z
[16] J. Senapati, K. Sasaki, G.C. Issa, J.H. Lipton, J.P. Radich, E. Jabbour, H.M. Kantarjian. Management of chronic myeloid leukemia in 2023 - common ground and common sense. Blood Cancer Journal 13(1) (2023) 58. https://doi.org/10.1038/s41408-023-00823-9
[17] Dhillon S. Olverembatinib: First Approval. Drugs 82(4) (2022) 469-475. https://doi.org/10.1007/s40265-022-01680-9 DOI: https://doi.org/10.1007/s40265-022-01680-9
[18] Olverembatinib included in newest guidelines on chronic myeloid leukemia (CML) management from the National Comprehensive Cancer Network (NCCN). Ascentage Pharma. January 16, 2024. Accessed May 30, 2025. http://tinyurl.com/bdhyjuut
[19] S. Sunder, U.C. Sharma, S. Pokharel. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduction and Targeted Therapy 8 (2023) 262. https://doi.org/10.1038/s41392-023-01469-6 DOI: https://doi.org/10.1038/s41392-023-01469-6
[20] A. Iurlo, D. Cattaneo, C. Bucelli, P. Spallarossa, F. Passamonti. Cardiovascular Adverse Events of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia: Clinical Relevance, Impact on Outcome, Preventive Measures and Treatment Strategies. Current Treatment Options in Oncology 24 (2023) 1720-1738. https://doi.org/10.1007/s11864-023-01149-1 DOI: https://doi.org/10.1007/s11864-023-01149-1
[21] M. Santoro, S. Mancuso, V. Accurso, D. Di Lisi, G. Novo, S. Siragusa. Cardiovascular Issues in Tyrosine Kinase Inhibitors Treatments for Chronic Myeloid Leukemia: A Review. Frontiers in Physiology 12 (2021) 675811. https://doi.org/10.3389/fphys.2021.675811 DOI: https://doi.org/10.3389/fphys.2021.675811
[22] A. Hochhaus, G. Saglio, T.P. Hughes, R.A. Larson, D.-W. Kim, S. Issaragrisil, P.D. le Coutre, G. Etienne, P.E. Dorlhiac-Llacer, R.E. Clark, I.W. Flinn, H. Nakamae, B. Donohue, W. Deng, D. Dalal, H.D. Menssen, H.M. Kantarjian. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 30 (2016) 1044-1054. https://doi.org/10.1038/leu.2016.5 DOI: https://doi.org/10.1038/leu.2016.5
[23] C.-E. Huang, K.-D.r Lee, J.-J. Chang, H.-E. Tzeng, S.-H. Huang, L.H.-L. Yu, M.-C. Chen. Association of Nilotinib With Cardiovascular Diseases in Patients With Chronic Myelogenous Leukemia: A National Population-Based Cohort Study. The Oncologist 29(1) (2024) e81-e89. https://doi.org/10.1093/oncolo/oyad225 DOI: https://doi.org/10.1093/oncolo/oyad225
[24] D. Zhao, X. Long, J. Wang. Pharmacovigilance study of BCR-ABL1 tyrosine kinase inhibitors: a safety analysis of the FDA adverse event reporting system. BMC Pharmacology and Toxicology 25 (2024) 20. https://doi.org/10.1186/s40360-024-00741-x DOI: https://doi.org/10.1186/s40360-024-00741-x
[25] US Food and Drug Administration. GLEEVEC® (imatinib mesylate). Label (updated September 2017). Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021588s053lbl.pdf (Accessed May 23, 2025)
[26] US Food and Drug Administration. SPRYCEL® (dasatinib). Label (updated February 2023). Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/021986s027lbl.pdf
(Accessed May 23, 2025)
[27] US Food and Drug Administration. TASIGNA® (nilotinib). Label (updated September 2021). Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/022068s035s036lbl.pdf
(Accessed May 23, 2025)
[28] US Food and Drug Administration. BOSULIF® (bosutinib). Label (updated September 2023). Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/203341s025lbl.pdf
(Accessed May 23, 2025)
[29] US Food and Drug Administration. ICLUSIG® (ponatinib). Label (updated February 2022).
Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/203469s035lbl.pdf
(Accessed May 23, 2025)
[30] US Food and Drug Administration. SCEMBLIX® (asciminib). Label (updated October 2021).
Available from:
https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215358s000Orig1lbl.pdf
(Accessed May 23, 2025)
[31] Y. Nur, Y.W. Hartati, M.I.H.L. Zein, I. Irkham, S. Gaffar, T. Subroto. Cerium oxide nanoparticles-assisted aptasensor for chronic myeloid leukaemia detection. ADMET and DMPK 12(4) (2024) 623-635. https://doi.org/10.5599/admet.2404 DOI: https://doi.org/10.5599/admet.2404
[32] N. Guichard, D. Guillarme, P. Bonnabry, S. Fleury-Souverain. Antineoplastic drugs and their analysis: a state of the art review. Analyst 142(13) (2017) 2273-2321. https://doi.org/10.1039/C7AN00367F DOI: https://doi.org/10.1039/C7AN00367F
[33] T. Dodevska, D. Hadzhiev, I. Shterev. Recent advances in electrochemical determination of anticancer drug 5-fluorouracil. ADMET and DMPK 11(2) (2023) 135-150. https://doi.org/10.5599/admet.1711 DOI: https://doi.org/10.5599/admet.1711
[34] A. Mueller-Schoell, S.L. Groenland, O. Scherf-Clavel, M. van Dyk, W. Huisinga, R. Michelet, U. Jaehde, N. Steeghs, A.D.R. Huitema, C. Kloft. Therapeutic drug monitoring of oral targeted antineoplastic drugs. European Journal of Clinical Pharmacology 77(4) (2021) 441-464. https://doi.org/10.1007/s00228-020-03014-8 DOI: https://doi.org/10.1007/s00228-020-03014-8
[35] L. Chen, Y. Zhang, Y.-X. Zhang, W.-L. Wang, D.-M. Sun, P.-Y. Li, X.-S. Feng, Y. Tan. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring. Journal of Pharmaceutical Analysis 14(4) (2024) 100899. https://doi.org/10.1016/j.jpha.2023.11.006 DOI: https://doi.org/10.1016/j.jpha.2023.11.006
[36] K. Theyagarajan, V. Purakkal Sruthi, J. Satija, S. Senthilkumar, Y.-J. Kim. Materials and design strategies for the electrochemical detection of antineoplastic drugs: Progress and perspectives. Materials Science and Engineering: R: Reports 161 (2024) 100840. https://doi.org/10.1016/j.mser.2024.100840 DOI: https://doi.org/10.1016/j.mser.2024.100840
[37] H.R.S. Lima, J.S.da Silva, E.A. de Oliveira Farias, P.R.S. Teixeira, C. Eiras, L.C.C. Nunes. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosensors and Bioelectronics 108 (2018) 27-37. https://doi.org/10.1016/j.bios.2018.02.034 DOI: https://doi.org/10.1016/j.bios.2018.02.034
[38] M. Ghalkhani, S.I. Kaya, N.K. Bakirhan, Y. Ozkan, S.A. Ozkan. Application of Nanomaterials in Development of Electrochemical Sensors and Drug Delivery Systems for Anticancer Drugs and Cancer Biomarkers. Critical Reviews in Analytical Chemistry 52(3) (2020) 481-503. https://doi.org/10.1080/10408347.2020.1808442 DOI: https://doi.org/10.1080/10408347.2020.1808442
[39] M. Brycht, L. Poltorak, S. Baluchová, K. Sipa, P. Borgul, K. Rudnicki, S. Skrzypek. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Critical Reviews in Analytical Chemistry 54(5) (2022) 1017-1108. https://doi.org/10.1080/10408347.2022.2106117 DOI: https://doi.org/10.1080/10408347.2022.2106117
[40] C. Laghlimi, A. Moutcine, A. Chtaini, J. Isaad, A. Soufi, Y. Ziat, H. Amhamdi, H. Belkhanchi. Recent advances in electrochemical sensors and biosensors for monitoring drugs and metabolites in pharmaceutical and biological samples. ADMET and DMPK 11(2) (2023) 151-173. https://doi.org/10.5599/admet.1709 DOI: https://doi.org/10.5599/admet.1709
[41] T. Dodevska, I. Shterev. Nanomaterials as catalysts for the sensitive and selective determination of diclofenac. ADMET and DMPK 12(1) (2024) 151-165. https://doi.org/10.5599/admet.2116 DOI: https://doi.org/10.5599/admet.2116
[42] C.S.H. Jesus, V.C. Diculescu. Redox mechanism, spectrophotometrical characterisation and voltammetric determination in serum samples of kinases inhibitor and anticancer drug dasatinib. Journal of Electroanalytical Chemistry 752 (2015) 47-53. https://doi.org/10.1016/j.jelechem.2015.06.006 DOI: https://doi.org/10.1016/j.jelechem.2015.06.006
[43] D.E. Bayraktepe, K. Polat, Z. Yazan. Electrochemical oxidation pathway of the anti-cancer agent dasatinib using disposable pencil graphite electrode and its adsorptive stripping voltammetric determination in biological samples. Journal of the Turkish Chemical Society Section A: Chemistry 5(2) (2018) 381-392. https://doi.org/10.18596/jotcsa.345238 DOI: https://doi.org/10.18596/jotcsa.345238
[44] E. Hammam, H.S. El-Desoky, A. Tawfik, M.M. Ghoneim. Voltammetric behavior and quantification of the anti-leukemia drug imatinib in bulk form, pharmaceutical formulation, and human serum at a mercury electrode. Canadian Journal of Chemistry 82 (2004) 1203-1209. https://doi.org/10.1139/v04-060 DOI: https://doi.org/10.1139/v04-060
[45] M. Brycht, K. Kaczmarska, B. Uslu, S.A. Ozkan, S. Skrzypek. Sensitive determination of anticancer drug imatinib in spiked human urine samples by differential pulse voltammetry on anodically pretreated boron-doped diamond electrode. Diamond and Related Materials 68 (2016) 13-22. https://doi.org/10.1016/j.diamond.2016.05.007 DOI: https://doi.org/10.1016/j.diamond.2016.05.007
[46] K. Koszelska, W. Ciesielski, S. Smarzewska. First electrochemical approach to voltammetric behavior and sensing of anticancer drug ponatinib. Journal of The Electrochemical Society 169 (2022) 046523. https://doi.org/10.1149/1945-7111/ac67f6 DOI: https://doi.org/10.1149/1945-7111/ac67f6
[47] C.E. Sener, B.D. Topal, S.A. Ozkan. Effect of monomer structure of anionic surfactant on voltammetric signals of an anticancer drug: rapid, simple, and sensitive electroanalysis of nilotinib in biological samples. Analytical and Bioanalytical Chemistry 412(29) (2020) 8073-8081. https://doi.org/10.1007/s00216-020-02934-9 DOI: https://doi.org/10.1007/s00216-020-02934-9
[48] H. Beitollahi, S.Z. Mohammadi, M. Safaei, S. Tajik. Applications of electrochemical sensors and biosensors based on modified screen printed electrodes: A review. Analytical Methods 12 (2020) 1547-1560. https://doi.org/10.1039/C9AY02598G DOI: https://doi.org/10.1039/C9AY02598G
[49] A.G.-M. Ferrari, S.J. Rowley-Neale, C.E. Banks. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open 3 (2021) 100032. https://doi.org/10.1016/j.talo.2021.100032 DOI: https://doi.org/10.1016/j.talo.2021.100032
[50] P. Kelíšková, O. Matvieiev, L. Janíková, R. Šelešovská. Recent advances in the use of screen-printed electrodes in drug analysis: A review. Current Opinion in Electrochemistry 42 (2023) 101408. https://doi.org/10.1016/j.coelec.2023.101408 DOI: https://doi.org/10.1016/j.coelec.2023.101408
[51] D.M. Stanković, Z. Milanović, Ľ. Švorc, V. Stanković, D. Janković, M. Mirković, S. Vranješ Đurić. Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product. Diamond and Related Materials 113 (2021) 108277. https://doi.org/10.1016/j.diamond.2021.108277 DOI: https://doi.org/10.1016/j.diamond.2021.108277
[52] T.M.B.F. Oliveira, S. Morais. New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. Applied Sciences 8 (2018) 1925. https://doi.org/10.3390/app8101925 DOI: https://doi.org/10.3390/app8101925
[53] P.A. Pushpanjali, J.G. Manjunatha, N. Hareesha. An overview of recent developments of carbon-based sensors for the analysis of drug molecules: Review. Journal of Electrochemical Science and Engineering 11(3) (2021) 161-177. https://doi.org/10.5599/jese.999 DOI: https://doi.org/10.5599/jese.999
[54] S. Hassanpour, J. Petr. A disposable electrochemical sensor based on single-walled carbon nanotubes for the determination of anticancer drug Dasatinib. Monatshefte für Chemie – Chemical Monthly 154 (2023) 1061-1069. https://doi.org/10.1007/s00706-023-03043-w DOI: https://doi.org/10.1007/s00706-023-03043-w
[55] J. Rodríguez, G. Castañeda, I. Lizcano. Electrochemical sensor for leukemia drug imatinib determination in urine by adsorptive striping square wave voltammetry using modified screen-printed electrodes. Electrochimica Acta 269 (2018) 668-675. https://doi.org/10.1016/j.electacta.2018.03.051 DOI: https://doi.org/10.1016/j.electacta.2018.03.051
[56] Y. Chen, Z. Liu, D. Bai. Determination of imatinib as anticancer drug in serum and urine samples by electrochemical technique using a chitosan/graphene oxide modified electrode. Alexandria Engineering Journal 93 (2024) 80-89. https://doi.org/10.1016/j.aej.2024.03.001 DOI: https://doi.org/10.1016/j.aej.2024.03.001
[57] M. Ghapanvari, T. Madrakian, A. Afkhami, A. Ghoorchian. A modified carbon paste electrode based on Fe3O4@multi-walled carbon nanotubes@polyacrylonitrile nanofibers for determination of imatinib anticancer drug. Journal of Applied Electrochemistry 50 (2020) 281-294. https://doi.org/10.1007/s10800-019-01388-x DOI: https://doi.org/10.1007/s10800-019-01388-x
[58] T. Dodevska, D. Hadzhiev, I. Shterev, Y. Lazarova. Application of biosynthesized metal nanoparticles in electrochemical sensors. Journal of the Serbian Chemical Society 87(4) (2022) 401-435. https://doi.org/10.2298/JSC200521077D DOI: https://doi.org/10.2298/JSC200521077D
[59] A.C.M. Hacke, D. Lima, S. Kuss. Green synthesis of electroactive nanomaterials by using plant-derived natural products. Journal of Electroanalytical Chemistry 922 (2022) 116786. https://doi.org/10.1016/j.jelechem.2022.116786 DOI: https://doi.org/10.1016/j.jelechem.2022.116786
[60] T.A. Saleh, G. Fadillah. Green synthesis protocols, toxicity, and recent progress in nanomaterial-based for environmental chemical sensors applications. Trends in Environmental Analytical Chemistry 39 (2023) e00204. https://doi.org/10.1016/j.teac.2023.e00204 DOI: https://doi.org/10.1016/j.teac.2023.e00204
[61] K. Korgaonkar, N.P. Agadi, J. Seetharamappa. Porous Zinc Oxide and Functionalized Multiwalled Carbon Nanotubes Composite as Electrode Material for Enhanced Electrochemical Sensing of an Anticancer Drug, Dasatinib. Journal of The Electrochemical Society 171 (2024) 037521. https://doi.org/10.1149/1945-7111/ad31f2 DOI: https://doi.org/10.1149/1945-7111/ad31f2
[62] Z. Wu, J. Liu, M. Liang, H. Zheng, C. Zhu, Y. Wang. Detection of Imatinib Based on Electrochemical Sensor Constructed Using Biosynthesized Graphene-Silver Nanocomposite. Frontiers in Chemistry 9 (2021) 670074. https://doi.org/10.3389/fchem.2021.670074 DOI: https://doi.org/10.3389/fchem.2021.670074
[63] M. Baladi, H. Teymourinia, E.A. Dawi, M. Amiri, A. Ramazani, M. Salavati-Niasari. Electrochemical determination of imatinib mesylate using TbFeO3/g-C3N4 nanocomposite modified glassy carbon electrode. Arabian Journal of Chemistry 16(8) (2023) 104963. https://doi.org/10.1016/j.arabjc.2023.104963 DOI: https://doi.org/10.1016/j.arabjc.2023.104963
[64] N. Naderi, B. Sabeti, F. Chekin. Fe3O4 nanoparticles decorated reduced graphene oxide and carbon nanotubes-based composite for sensitive detection of imatinib in plasma and urine: Original scientific paper. Journal of Electrochemical Science and Engineering 14(2) (2024) 119-133. https://doi.org/10.5599/jese.2145 DOI: https://doi.org/10.5599/jese.2145
[65] Y. Chen, Z. Yang, H. Hu, X. Zhou, F. You, C. Yao, F.J. Liu, P. Yu, D. Wu, J. Yao, R. Hu, X. Jiang, H. Yang. Advanced Metal–Organic Frameworks-Based Catalysts in Electrochemical Sensors. Frontiers in Chemistry 10 (2022) 881172. https://doi.org/10.3389/fchem.2022.881172 DOI: https://doi.org/10.3389/fchem.2022.881172
[66] Q. Yang, Q. Xu, H.-L. Jiang. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews 46 (2017) 4774-4808. https://doi.org/10.1039/C6CS00724D DOI: https://doi.org/10.1039/C6CS00724D
[67] N. Kajal, V. Singh, R. Gupta, S. Gautam. Metal organic frameworks for electrochemical sensor applications: A review. Environmental Research 204 (part C) (2022) 112320. https://doi.org/10.1016/j.envres.2021.112320 DOI: https://doi.org/10.1016/j.envres.2021.112320
[68] C.-H. Chuang, C.-W. Kung. Metal−Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. Electroanalysis 32 (2020) 1885. https://doi.org/10.1002/elan.202060111 DOI: https://doi.org/10.1002/elan.202060111
[69] W. Zhang, X. Li, X. Ding, K. Hua, A. Sun, X. Hu, Z. Nie, Y. Zhang, J. Wang, R. Li, S. Liu. Progress and opportunities for metal-organic framework composites in electrochemical sensors. RSC Advances 13(16) (2023) 10800-10817. https://doi.org/10.1039/d3ra00966a DOI: https://doi.org/10.1039/D3RA00966A
[70] R. Lalawmpuia, M. Lalhruaitluangi, Lalhmunsiama, D. Tiwari. Metal organic framework (MOF): Synthesis and fabrication for the application of electrochemical sensing. Environmental Engineering Research 29(5) (2024) 230636. https://doi.org/10.4491/eer.2023.636 DOI: https://doi.org/10.4491/eer.2023.636
[71] A. Mir, M. Shabani-Nooshabadi. Application of binary metal organic framework in an electrochemical sensor decorated with gold nanoparticles for the determination of anticancer drug imatinib in plasma. IEEE Sensors Journal 23(11) (2023) 12124-12132. https://doi.org/10.1109/JSEN.2023.3266098 DOI: https://doi.org/10.1109/JSEN.2023.3266098
[72] N.R. Jalal, T. Madrakian, A. Afkhami, A. Ghoorchian. In Situ Growth of Metal–Organic Framework HKUST-1 on Graphene Oxide Nanoribbons with High Electrochemical Sensing Performance in Imatinib Determination. ACS Applied Materials & Interfaces 12(4) (2020) 4859-4869. https://doi.org/10.1021/acsami.9b18097 DOI: https://doi.org/10.1021/acsami.9b18097
[73] B.H. Pour, N. Haghnazari, F. Keshavarzi, E. Ahmadi, B.R. Zarif. High sensitive electrochemical sensor for imatinib based on metal-organic frameworks and multiwall carbon nanotubes nanocomposite. Microchemical Journal 165 (2021) 106147. https://doi.org/10.1016/j.microc.2021.106147 DOI: https://doi.org/10.1016/j.microc.2021.106147
[74] X. Xu, S. Li, X. Luan, C. Xuan, P. Zhao, T. Zhou, Q. Tian, D. Pan. Sensitivity enhancement of a Cu (II) metal organic framework-acetylene black-based electrochemical sensor for ultrasensitive detection of imatinib in clinical samples. Frontiers in Chemistry 11 (2023) 1191075. https://doi.org/10.3389/fchem.2023.1191075 DOI: https://doi.org/10.3389/fchem.2023.1191075
[75] X. Xu, W. Li, H. Xin, L. Tang, X. Zhou, T. Zhou, C. Xuan, Q. Tian, D.Pan. Engineering of CuMOF-SWCNTs@AuNPs-Based Electrochemical Sensors for Ultrasensitive and Selective Monitoring of Imatinib in Human Serum. ACS Omega 9(4) (2024) 4744-4753. https://doi.org/10.1021/acsomega.3c08002 DOI: https://doi.org/10.1021/acsomega.3c08002
[76] A.R. Abbasi, M. Rizvandi, A. Azadbakht, S. Rostamnia. Controlled uptake and release of imatinib from ultrasound nanoparticles Cu3(BTC)2 metal–organic framework in comparison with bulk structure. Journal of Colloid and Interface Science 471 (2016) 112-117. https://doi.org/10.1016/j.jcis.2016.03.018 DOI: https://doi.org/10.1016/j.jcis.2016.03.018
[77] B. Habibi, S. Pashazadeh. Fabrication, characterization and performance evaluation of an amplified electrochemical sensor based on MOFs nanocomposite for leukemia drug Imatinib determination. Sensing and Bio-Sensing Research 42 (2023) 100604. https://doi.org/10.1016/j.sbsr.2023.100604 DOI: https://doi.org/10.1016/j.sbsr.2023.100604
[78] L. Wang, M. Pagett, W. Zhang. Molecularly imprinted polymer (MIP) based electrochemical sensors and their recent advances in health applications. Sensors and Actuators Reports 5 (2023) 100153. https://doi.org/10.1016/j.snr.2023.100153 DOI: https://doi.org/10.1016/j.snr.2023.100153
[79] E. Yıldız, A. Cetinkaya, M.E. Çorman, E.B. Atici, L. Uzun, S.A. Ozkan. An electrochemical sensor based on carbon nanofiber and molecular imprinting strategy for dasatinib recognition. Bioelectrochemistry 158 (2024) 108701. https://doi.org/10.1016/j.bioelechem.2024.108701 DOI: https://doi.org/10.1016/j.bioelechem.2024.108701
[80] A. Herrera-Chacón, X. Cetó, M. del Valle. Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues. Analytical and Bioanalytical Chemistry 413 (2021) 6117-6140. https://doi.org/10.1007/s00216-021-03313-8 DOI: https://doi.org/10.1007/s00216-021-03313-8
[81] A. Galal, N.F. Atta. Chapter TWELVE - Use of ionic liquids in electrochemical sensors. Editor(s): S. Carda-Broch, M. Ruiz-Angel, Ionic Liquids in Analytical Chemistry, Elsevier, 2022, pp. 343-368, ISBN 9780128233344. https://doi.org/10.1016/B978-0-12-823334-4.00013-8 DOI: https://doi.org/10.1016/B978-0-12-823334-4.00013-8
[82] D. Khorsandi, A. Zarepour, I. Rezazadeh, M. Ghomi, R. Ghanbari, A. Zarrabi, F.T. Esfahani, N. Mojahed, M. Baghayeri, E.N. Zare, P. Makvandi. Ionic liquid-based materials for electrochemical biosensing. Clinical and Translational Discovery 2 (2022) e127. https://doi.org/10.1002/ctd2.127 DOI: https://doi.org/10.1002/ctd2.127
[83] A. Moghaddam, H.A. Zamani, H. Karimi-Maleh. A New Electrochemical Platform for Dasatinib Anticancer Drug Sensing Using Fe3O4-SWCNTs/Ionic Liquid Paste Sensor. Micromachines 12(4) (2021) 437. https://doi.org/10.3390/mi12040437 DOI: https://doi.org/10.3390/mi12040437
[84] S. Tajik, A.A. Afshar, S. Shamsaddini, M.B. Askari, Z. Dourandish, F.G. Nejad, H. Beitollahi, A. Di Bartolomeo. Fe3O4@MoS2/rGO Nanocomposite/Ionic Liquid Modified Carbon Paste Electrode for Electrochemical Sensing of Dasatinib in the Presence of Doxorubicin. Industrial & Engineering Chemistry Research 62 (2023) 4473-4480. https://doi.org/10.1021/acs.iecr.2c00370 DOI: https://doi.org/10.1021/acs.iecr.2c00370
[85] C.S. Pichot, S.M. Hartig, L. Xia, C. Arvanitis, D. Monisvais, F.Y. Lee, J.A. Frost, S.J. Corey. Dasatinib synergizes with doxorubicin to block growth, migration, and invasion of breast cancer cells. British journal of cancer 101(1) (2009) 38-47. https://doi.org/10.1038/sj.bjc.6605101 DOI: https://doi.org/10.1038/sj.bjc.6605101
[86] N. Aggerholm-Pedersen, C. Demuth, A. Safwat, P. Meldgaard, M. Kassem, B.S. Sorensen. Dasatinib and Doxorubicin Treatment of Sarcoma Initiating Cells: A Possible New Treatment Strategy. Stem Cells International (2016) 9601493. https://doi.org/10.1155/2016/9601493 DOI: https://doi.org/10.1155/2016/9601493
[87] B. Hatamluyi, Z. Es'haghi. A layer-by-layer sensing architecture based on dendrimer and ionic liquid supported reduced graphene oxide for simultaneous hollow-fiber solid phase microextraction and electrochemical determination of anti-cancer drug imatinib in biological samples. Journal of Electroanalytical Chemistry 801 (2017) 439-449. https://doi.org/10.1016/j.jelechem.2017.08.032 DOI: https://doi.org/10.1016/j.jelechem.2017.08.032
[88] A.A. Genc, W. Bouali, N. Erk, G. Kaya, K. Ocakoglu. A Cr2AlC MAX Phase-Based Electrochemical Probe for the Detection of Asciminib in Biological and Pharmaceutical Samples. ChemistrySelect 10 (2025) e202404450. https://doi.org/10.1002/slct.202404450 DOI: https://doi.org/10.1002/slct.202404450
[89] M. Yıldır, A.A. Genc, N. Buğday, N. Erk, N. S. Peighambardoust, U. Aydemir, S. Yaşar. Novel Electrochemical Approaches for Anticancer Drug Monitoring: Application of CoS@Nitrogen-Doped Amorphous Porous Carbon Composite in Nilotinib Detection. ACS Omega 10(1) (2025) 261-271. https://doi.org/10.1021/acsomega.4c05505 DOI: https://doi.org/10.1021/acsomega.4c05505
[90] H.S. Mondal, Y. Feng, G. Biswas, M.Z. Hossain. Applications and Challenges of DNA-Based Electrochemical Biosensors for Monitoring Health: A Systematic Review. DNA 4 (2024) 300-317. https://doi.org/10.3390/dna4030020 DOI: https://doi.org/10.3390/dna4030020
[91] M.M. Moarefdoust, S. Jahani, M. Moradalizadeh, M.M. Motaghi, M.M. Foroughi. A DNA Biosensor Based on a Raspberry-like Hierarchical Nano-structure for the Determination of the Anticancer Drug Nilotinib. ChemistryOpen 11 (2022) e202100261. https://doi.org/10.1002/open.202100261 DOI: https://doi.org/10.1002/open.202100261
[92] S. Smarzewska, A. Ignaczak, K. Koszelska. Electrochemical and theoretical studies of the interaction between anticancer drug ponatinib and dsDNA. Scientific Reports 14 (2024) 2278. https://doi.org/10.1038/s41598-024-52609-z DOI: https://doi.org/10.1038/s41598-024-52609-z
[93] E. Noviana, C.S. Henry. Simultaneous electrochemical detection in paper-based analytical devices. Current Opinion in Electrochemistry 23 (2020) 1-6. https://doi.org/10.1016/j.coelec.2020.02.013 DOI: https://doi.org/10.1016/j.coelec.2020.02.013
[94] T. Ozer, C.S. Henry. Review—Recent Advances in Sensor Arrays for the Simultaneous Electrochemical Detection of Multiple Analytes. Journal of The Electrochemical Society 168 (2021) 057507. https://doi.org/10.1149/1945-7111/abfc9f DOI: https://doi.org/10.1149/1945-7111/abfc9f
[95] T. Kondori, S. Tajik, N. Akbarzadeh-T, H. Beitollahi, C. Graiff. Screen-printed electrode modified with Co-NPs, as an electrochemical sensor for simultaneous determination of doxorubicin and dasatinib. Journal of the Iranian Chemical Society 19 (2022) 4423-4434. https://doi.org/10.1007/s13738-022-02613-9 DOI: https://doi.org/10.1007/s13738-022-02613-9
[96] S.A.R. Alavi-Tabari, M.A. Khalilzadeh, H. Karimi-Maleh. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. Journal of Electroanalytical Chemistry 811 (2018) 84-88. https://doi.org/10.1016/j.jelechem.2018.01.034 DOI: https://doi.org/10.1016/j.jelechem.2018.01.034
[97] P.K. Kalambate, Y. Li, Y. Shen, Y. Huang. Mesoporous Pd@Pt core–shell nanoparticles supported on multi-walled carbon nanotubes as a sensing platform: application in simultaneous electrochemical detection of anticancer drugs doxorubicin and Dasatinib. Analytical Methods 11 (2019) 443-453. https://doi.org/10.1039/C8AY02381F DOI: https://doi.org/10.1039/C8AY02381F
[98] S.Z. Mohammadi, F. Mousazadeh, S. Tajik. Simultaneous Determination of Doxorubicin and Dasatinib by using Screen-Printed Electrode/Ni–Fe Layered Double Hydroxide. Industrial & Engineering Chemistry Research 62(11) (2023) 4646-4654. https://doi.org/10.1021/acs.iecr.2c03105 DOI: https://doi.org/10.1021/acs.iecr.2c03105
[99] A. Vora, C.D. Mitchell, L. Lennard, T. Eden, S.E. Kinsey, J. Lilleyman, S.M. Richards. Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. The Lancet 368(9544) (2006) 1339-1348. https://doi.org/10.1016/S0140-6736(06)69558-5 DOI: https://doi.org/10.1016/S0140-6736(06)69558-5
[100] H. Karimi-Maleh, A.F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri, R. Moradi. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosensors and Bioelectronics 86 (2016) 879-884. https://doi.org/10.1016/j.bios.2016.07.086 DOI: https://doi.org/10.1016/j.bios.2016.07.086
Published
Issue
Section
License
Copyright (c) 2025 Totka Dodevska

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Funding data
- 
																	Plovdiv University 'Paisii Hilendarski'
										
Grant numbers BG16RFPR002-1.014-0007 
						


