Optimizing gefitinib nanoliposomes by Box-Behnken design and coating with chitosan: A sequential approach for enhanced drug delivery

Authors

  • Seema Rohilla Geeta Institute of Pharmacy, Geeta University, Naultha, Panipat, Haryana, India https://orcid.org/0000-0001-9233-0047
  • Rajendra Awasthi Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India https://orcid.org/0000-0002-1286-1874
  • Ankur Rohilla Department of Pharmaceutical Sciences, Universal Group of Institutions, Dera Bassi, Mohali, Punjab, India https://orcid.org/0009-0002-1050-3093
  • Sachin Kumar Singh School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India https://orcid.org/0000-0003-3823-6572
  • Dinesh Kumar Chellappan Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia https://orcid.org/0000-0001-5567-6663
  • Kamal Dua Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia and Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia https://orcid.org/0000-0002-7507-1159
  • Harish Dureja 7Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India and Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India https://orcid.org/0000-0001-8336-1984

DOI:

https://doi.org/10.5599/admet.2366

Keywords:

Liposomes, response surface methodology, pulmonary cancer

Abstract

Background and Purpose: This study aimed to improve the stability and prolonged gefitinib release from the nanoliposomes. Experimental approach: Nanoliposomes were prepared by reverse-phase evaporation and optimized using Box-Behnken design to investigate the influence of sonication time (X1), tween 80 / soya phosphatidylcholine ratio (X2), and cholesterol/soya phosphatidylcholine ratio (X3) on nanoliposomes. Key results: Optimized nanoliposomes were quasi-spherical shaped, with a mean dimension of 93.2 nm and an encapsulation efficiency of 87.56±0.17 %. Surface decoration of the optimized batch was done using different concentrations of chitosan. The optimal chitosan concentration required to adorn the nanoliposome surface was 0.01 %. In comparison to unadorned nanoliposomes (82.16±0.65 %), adorned nanoliposomes (78.04±0.35 %) released the drug consistently over 24 h via Fickian diffusion. The IC50 values for surface-adorned nanoliposomes in A549 and H1299 cells were 6.53±0.75 and 4.73±0.46 µM, respectively. Cytotoxicity of the surface-decorated nanoliposomes may be due to their higher zeta potential and prolonged drug release. At the end of the sixth month, the samples stored at 4 °C were more stable than those stored at 25 °C and 45 °C. The stability of plain nanoliposomes has increased after chitosan coating. Thus, by using different concentrations of chitosan solution as coating material, we can develop a suitable sustained drug-release surface-adorned nanoliposomal formulation. Conclusion: The developed nanoliposomes may offer a new path for melanoma clinics.

Downloads

Download data is not yet available.

References

A.M. Cryer, A.J. Thorley. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacology & Therapeutics 198 (2019) 189-205. https://doi.org/10.1016/j.pharmthera.2019.02.010.

M.P. Rivera, A.C. Mehta, M.M. Wahidi. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer. Chest 143 (2013) e142S-e165S. https://doi.org/10.1378/chest.12-2353.

B. Hochhegger, G.R. Alves, K.L. Irion, C.C. Fritscher, L.G. Fritscher, N.H. Concatto, E. Marchiori. PET/CT imaging in lung cancer: Indications and findings. Jornal Brasileiro de Pneumologia 41 (2015) 264-274. https://doi.org/10.1590/S1806-37132015000004479.

E. Carrasco-Esteban, J.A. Dominguez-Rullan, P. Barrionuevo-Castillo, L. Pelari-Mici, O. Leaman, S. Sastre-Gallego, F. López-Campos. Current role of nanoparticles in the treatment of lung cancer. Journal of Clinical and Translational Research 7 (2021) 140-155. https://doi.org/10.18053/jctres.07.202102.005.

Y.E. Miller. Pathogenesis of lung cancer. American Journal of Respiratory Cell and Molecular Biology 33 (2005) 216-223. https://doi.org/10.1165/rcmb.2005-0158OE.

A.V. Tonder, A.M. Joubert, A.D. Cromarty. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Research Notes 8 (2015) 47. https://doi.org/10.1186/s13104-015-1000-8.

M. Ginouves, B. Carme, P. Couppie, G. Prevot. Comparison of tetrazolium salt assays for evaluation of drug activity against Leishmania spp. Journal of Clinical Microbiology 52 (2014) 2131-2138. https://doi.org/10.1128/jcm.00201-14.

Y. Shi, C. Su, W. Cui, H. Li, L. Liu, B. Feng, M. Liu, R. Su, L. Zhao. Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. Journal of Nanobiotechnology 12 (2014) 43. https://doi.org/10.1186/s12951-014-0043-7.

M. Chougule, B. Padhi, A. Misra. Nano-liposomal dry powder inhaler of tacrolimus: Preparation, characterization, and pulmonary pharmacokinetics. International Journal of Nanomedicine 2 (2007) 675-688. https://doi.org/10.2147/IJN.S2.4.675.

C. Zappa, S.A. Mousa. Non-small cell lung cancer: current treatment and future advances. Translational Lung Cancer Research 5 (2016) 288-300. https://doi.org/10.21037/tlcr.2016.06.07.

M. Tiseo, M. Bartolotti, F. Gelsomino, P. Bordi. Emerging role of gefitinib in the treatment of non-small-cell lung cancer (NSCLC). Drug Design, Development and Therapy 4 (2010) 81-98. https://doi.org/10.2147/DDDT.S6594.

C. Godugu, R. Doddapaneni, A.R. Patel, R. Singh, R. Mercer, M. Singh. Novel gefitinib formulation with improved oral bioavailability in treatment of A431 skin carcinoma. Pharmaceutical Research 33 (2016) 137-154. https://doi.org/10.1007/s11095-015-1771-6.

I.N. Maruyama. Mechanisms of activation of receptor tyrosine kinases: Monomers or dimers. Cells 3 (2014) 304-330. https://doi.org/10.3390/cells3020304.

P.P. Deshpande, S. Biswas, V.P. Torchilin. Current trends in the use of liposomes for tumor targeting. Nanomedicine 8 (2013) 1509-1528. https://doi.org/10.2217/nnm.13.118.

G. Bozzuto, A. Molinari. Liposomes as nanomedical devices. International Journal of Nanomedicine 10 (2015) 975-999. https://doi.org/10.2147/IJN.S68861.

J. Ni, L. Zhang. Evaluation of three small molecular drugs for targeted therapy to treat nonsmall cell lung cancer. Chinese Medical Journal 129 (2016) 332-340. https://doi.org/10.4103/0366-6999.174484.

J.H. Nam, S.Y. Kim, H. Seong. Investigation on physicochemical characteristics of a nanoliposome-based system for dual drug delivery. Nanoscale Research Letters 13 (2018) 101. https://doi.org/10.1186/s11671-018-2519-0.

S. Onoue, S. Yamada, H.K. Chan. Nanodrugs: pharmacokinetics and safety. International Journal of Nanomedicine 9 (2014) 1025-1037. https://doi.org/10.1186/s11671-018-2519-0.

S. Wang, R. Su, S. Nie, M. Sun, J. Zhang, D. Wu, N. Moustaid-Moussa. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. The Journal of Nutritional Biochemistry 25 (2014) 363-376. https://doi.org/10.1016/j.jnutbio.2013.10.002.

BA. Chan, B.G.M. Hughes. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Translational Lung Cancer Research 4 (2015) 36-54. https://doi.org/10.3978/j.issn.2218-6751.2014.05.01.

A.R. Patel, M.B. Chougule, I. Townley, P. Ram, G. Wang, S. Mandip. Efficacy of aerosolized celecoxib encapsulated nanostructured lipid carrier in non-small cell lung cancer in combination with docetaxel. Pharmaceutical Research 30 (2013) 1435-1446. https://doi.org/10.1007/s11095-013-0984-9.

A.R. Patel, M.B. Chougule, E. Lim, K.P. Francis, S. Safe, S. Mandip. Theranostic tumor homing nanocarriers for the treatment of lung cancer. Nanomedicine: Nanotechnology, Biology and Medicine 10 (2014) 1053-1063. https://doi.org/10.1016/j.nano.2013.12.002.

T. Yamaguchi, S. Isogai, T. Okamura, S. Uozu, Y. Mieno, T. Hoshino, Y. Goto, M. Hayashi, T. Nakanishi, K. Imaizumi. Pharmacokinetics of gefitinib in a patient with non-small cell lung cancer undergoing continuous ambulatory peritoneal dialysis. Case Reports in Oncology 8 (2015) 78-82. https://doi.org/10.1159/000375485.

A. Verma, G. Sharma, A. Jain, A. Tiwari, S. Saraf, P.K. Panda, O.P. Katare, S.K. Jain. Systematic optimization of cationic surface engineered mucoadhesive vesicles employing Design of Experiment (DoE): A preclinical investigation. International Journal of Biological Macromolecules 133 (2019) 1142-1155. https://doi.org/10.1016/j.ijbiomac.2019.04.118.

Ferreira SLC, Bruns RE, Ferreira HS, G.D. Matos, J.M. David, G.C. Brandão, E.P. da Silva, L.A. Portugal, P.S. Dos Reis, A.S. Souza, W.N. Dos Santos. Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta 597 (2007) 179-186. https://doi.org/10.1016/j.aca.2007.07.011.

S. Nandhakumar, M. Dhanaraju, C. Pavankumar, V. Sundar. Optimization of paclitaxel loaded poly (-caprolactone) nanoparticles using Box Behnken design design. Beni-Suef University Journal of Basic and Applied Sciences 6 (2017) 362-373. https://doi.org/10.1016/j.bjbas.2017.06.002.

G.E. Box, D.W. Behnken. Some new three level designs for the study of quantitative variables. Technometrics 2 (1960) 455-475. https://doi.org/10.1080/00401706.1960.10489912.

S.N. Azizi, N. Asemi. A Box-Behnken design for determining the optimum experimental condition of the fungicide (Vapam) sorption onto soil modified with perlite. Journal of Environmental Science and Health, Part B 47 (2012) 692-699. https://doi.org/10.1080/03601234.2012.669260.

X. Cao, D. Hou, L. Wang, S. Li, S. Sun, Q. Ping, Y. Xu. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biological Research 49 (2016) 32-41. https://doi.org/10.1186/s40659-016-0093-4.

S. Rohilla, H. Dureja. Effect of chitosan coating on the physiochemical characteristics of gefitinib loaded nanoliposomes. International Journal of Pharmaceutical Sciences and Research 9 (2018) 1000-1013. https://doi.org/10.13040/IJPSR.0975-8232.9(12).5098-10.

C. Dong, J.A. Rogers. Polymer-coated liposomes: stability and release of ASA from carboxymethyl chitin-coated liposomes. Journal of Controlled Release 17 (1991) 217-224. https://doi.org/10.1016/0168-3659(91)90140-9.

C. Dai, B. Wang, H. Zhao, B. Li, J. Wang. Preparation and characterization of liposomes-in-alginate (LIA) for protein delivery system. Colloids and Surfaces B: Biointerfaces 47 (2006) 205-210. https://doi.org/10.1016/j.colsurfb.2005.07.013.

M. Hasan, K. Elkhoury, C.J.F. Kahn, E. Arab-Tehrany, M. Linder. Preparation, characterization, and release kinetics of chitosan-coated nanoliposomes encapsulating curcumin in simulated environments. Molecules 24 (2019) 2023. https://doi.org/10.3390/molecules24102023.

M. Hasan, K. Elkhoury, N. Belhaj, C. Kahn, A. Tamayol, M. Barberi-Heyob, E. Arab-Tehrany, M. Linder. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells. Marine Drugs 18 (2020) 217. https://doi.org/10.3390/md18040217.

S. Rohilla, H. Dureja. Recent patents, formulation and characterization of nanoliposomes. Recent Patents in Drug Delivery and Formulations 9 (2015) 213-224. https://doi.org/10.2174/1872211309666150629105900.

B. Ding, X. Zhang, K. Hayat, S. Xia, C. Jia, M. Xie, C. Liu. Preparation, characterization and the stability of ferrous glycinate nanoliposomes. Journal of Food Engineering 102 (2011) 202-208. https://doi.org/10.1016/j.jfoodeng.2010.08.022.

M.M. Mady, M.M. Darwish. Effect of chitosan coating on the characteristics of DPPC liposomes. Journal of Advanced Research 1 (2010) 187-191. https://doi.org/10.1016/j.jare.2010.05.008.

G.H. Shin, S.K. Chung, J.T. Kim, H.J Joung, H.J. Park. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. ournal of Agricultural and Food Chemistry 61 (2013) 11119-11126. https://doi.org/10.1021/jf4035404.

S. Rohilla, R. Awasthi, M. Mehta, D.K. Chellappan, G. Gupta, M. Gulati, S.K. Singh, K. Anand, B.G. Oliver, K. Dua, H. Dureja. Preparation and evaluation of gefitinib containing nanoliposomal formulation for lung cancer therapy. BioNanoScience 12 (2022) 241-255. https://doi.org/10.1007/s12668-022-00938-6.

A. Haeri, B. Alinaghian, M. Daeihamed, S. Dadashzadeh. Preparation and characterization of stable nano-liposomal formulation of fluoxetine as a potential adjuvant therapy for drug-resistant tumors. Iranian Journal of Pharmaceutical Research 13 (2014) 3-14.

S. Khatak, M. Mehta, R. Awasthi, K.R. Paudel, S.K. Singh, M. Gulati, N.G. Hansbro, P.M. Hansbro, K. Dua, H. Dureja. Solid lipid nanoparticles containing anti-tubercular drugs attenuate the Mycobacterium marinum infection. Tuberculosis 125 (2020) 102008. https://doi.org/10.1016/j.tube.2020.102008.

Z. Hadian, M.A. Sahari, H.R. Moghimi, M. Barzegar. Formulation, characterization and optimization of liposomes containing eicosapentaenoic and docosahexaenoic acids; a methodology approach. Iranian Journal of Pharmaceutical Research 13 (2014) 393-404.

Y. Chan, S.W. Ng, D.K. Chellappan, T. Madheswaran, F. Zeeshan, P. Kumar, V. Pillay, G. Gupta, R. Wadhwa, M. Mehta, P. Wark. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. International Journal of Polymeric Materials and Polymeric Biomaterials 70 (2021) 754-763. https://doi.org/10.1080/00914037.2020.1765350.

M. Mehta, H. Dureja, M. Garg. Development and optimization of boswellic acid-loaded proniosomal gel. Drug Delivery 23 (2016) 3072-3081. https://doi.org/10.3109/10717544.2016.1149744.

A. Grover, L.Z. Benet. Intermittent drug dosing intervals guided by the operational multiple dosing half lives for predictable plasma accumulation and fluctuation. Journal of Pharmacokinetics and Pharmacodynamics 38 (2011) 369-383. https://doi.org/10.1007/s10928-011-9198-0.

Indian Pharmacopoeia. Government of India, Ministry of Health and Family Welfare. 2 (1996) 448.

X.L. Ni, L.X. Chen, H. Zhang, B. Yang, S. Xu, M. Wu. In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer. Drug Delivery 24 (2017) 1501-1512. https://doi.org/10.1080/10717544.2017.1384862.

R. Mirzayans, B. Andrais, A. Scott, A. Tessier, D. Murray. A sensitive assay for the evaluation of cytotoxicity and its pharmacologic modulation in human solid tumor-derived cell lines exposed to cancer-therapeutic agents. Journal of Pharmacy & Pharmaceutical Sciences 10 (2007) 298s-311s.

P. Skupin-Mrugalska, T.J. Minko. Development of liposomal vesicles for osimertinib delivery to EGFR mutation-positive lung cancer cells. Pharmaceutics 12 (2020) 939. https://doi.org/10.3390/pharmaceutics12100939.

R. Talens-Visconti, O. Diez-Sales, J.V. de Julian-Ortiz, A. Nacher. Nanoliposomes in cancer therapy: Marketed products and current clinical trials. International Journal of Molecular Sciences 23 (2022) 4249. https://doi.org/10.3390/ijms23084249.

M. Chiani, D. Norouzian, M.A. Shokrgozar, K. Azadmanesh, A. Najmafshar, M.R. Mehrabi, A. Akbarzadeh. Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artificial Cells Nanomedicine and Biotechnology 46 (2018) 757-763. https://doi.org/10.1080/21691401.2017.1337029.

M. Mozafari. In: Liposomes. Methods in Molecular Biology, V. Weissig, (Ed)., Humana Press, New Jersey, United States, 2010 p. 29-50. https://doi.org/10.1007/978-1-60327-360-2_2.

Y. Chan, S.W. Ng, D.K. Chellappan, T. Madheswaran, F. Zeeshan, P. Kumar, V. Pillay, G. Gupta, R. Wadhwa, M. Mehta, P. Wark. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. International Journal of Polymeric Materials and Polymeric Biomaterials 70 (2021) 754-763. https://doi.org/10.1080/00914037.2020.1765350.

L. Cheng, C. Jin, W. Lv, Q. Ding, X. Han. Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. PLoS One 6 (2011) e25433. https://doi.org/10.1371/journal.pone.0025433.

X. Zhou, B. Yung, Y. Huang, H. Li, X. Hu, G. Xiang, R.J. Lee. Novel liposomal gefitinib (L-GEF) formulations. Anticancer Research 32 (2012) 2919-2923.

H.K. Ha, J.W. Kim, M.R. Lee, W. Jun, W.J. Lee. Cellular uptake and cytotoxicity of β-lactoglobulin nanoparticles: The effects of particle size and surface charge. Asian-Australasian Journal of Animal Sciences 28 (2015) 420-427. https://doi.org/10.5713/ajas.14.0761.

C. He, Y. Hu, L. Yin, C. Tang, C. Yin. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31 (2010) 3657-3666. https://doi.org/10.1016/j.biomaterials.2010.01.065.

S. Gulzar, S. Benjakul. Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization. Food Chemistry 310 (2020) 125916. https://doi.org/10.1016/j.foodchem.2019.125916.

X. Chen, L.Q. Zou, J. Niu, W. Liu, S.F. Peng, C.M. Liu. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20 (2015) 14293-14311. https://doi.org/10.3390/molecules200814293.

Downloads

Published

31-07-2024 — Updated on 31-07-2024

Issue

Section

Original Scientific Articles

How to Cite

Optimizing gefitinib nanoliposomes by Box-Behnken design and coating with chitosan: A sequential approach for enhanced drug delivery. (2024). ADMET and DMPK, 12(4), 657-677. https://doi.org/10.5599/admet.2366

Funding data

Similar Articles

1-10 of 150

You may also start an advanced similarity search for this article.