Optimizing gefitinib nanoliposomes by Box-Behnken design and coating with chitosan: A sequential approach for enhanced drug delivery
DOI:
https://doi.org/10.5599/admet.2366Keywords:
Liposomes, response surface methodology, pulmonary cancerAbstract
Background and Purpose: This study aimed to improve the stability and prolonged gefitinib release from the nanoliposomes. Experimental approach: Nanoliposomes were prepared by reverse-phase evaporation and optimized using Box-Behnken design to investigate the influence of sonication time (X1), tween 80 / soya phosphatidylcholine ratio (X2), and cholesterol/soya phosphatidylcholine ratio (X3) on nanoliposomes. Key results: Optimized nanoliposomes were quasi-spherical shaped, with a mean dimension of 93.2 nm and an encapsulation efficiency of 87.56±0.17 %. Surface decoration of the optimized batch was done using different concentrations of chitosan. The optimal chitosan concentration required to adorn the nanoliposome surface was 0.01 %. In comparison to unadorned nanoliposomes (82.16±0.65 %), adorned nanoliposomes (78.04±0.35 %) released the drug consistently over 24 h via Fickian diffusion. The IC50 values for surface-adorned nanoliposomes in A549 and H1299 cells were 6.53±0.75 and 4.73±0.46 µM, respectively. Cytotoxicity of the surface-decorated nanoliposomes may be due to their higher zeta potential and prolonged drug release. At the end of the sixth month, the samples stored at 4 °C were more stable than those stored at 25 °C and 45 °C. The stability of plain nanoliposomes has increased after chitosan coating. Thus, by using different concentrations of chitosan solution as coating material, we can develop a suitable sustained drug-release surface-adorned nanoliposomal formulation. Conclusion: The developed nanoliposomes may offer a new path for melanoma clinics.
Downloads
References
A.M. Cryer, A.J. Thorley. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacology & Therapeutics 198 (2019) 189-205. https://doi.org/10.1016/j.pharmthera.2019.02.010.
M.P. Rivera, A.C. Mehta, M.M. Wahidi. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer. Chest 143 (2013) e142S-e165S. https://doi.org/10.1378/chest.12-2353.
B. Hochhegger, G.R. Alves, K.L. Irion, C.C. Fritscher, L.G. Fritscher, N.H. Concatto, E. Marchiori. PET/CT imaging in lung cancer: Indications and findings. Jornal Brasileiro de Pneumologia 41 (2015) 264-274. https://doi.org/10.1590/S1806-37132015000004479.
E. Carrasco-Esteban, J.A. Dominguez-Rullan, P. Barrionuevo-Castillo, L. Pelari-Mici, O. Leaman, S. Sastre-Gallego, F. López-Campos. Current role of nanoparticles in the treatment of lung cancer. Journal of Clinical and Translational Research 7 (2021) 140-155. https://doi.org/10.18053/jctres.07.202102.005.
Y.E. Miller. Pathogenesis of lung cancer. American Journal of Respiratory Cell and Molecular Biology 33 (2005) 216-223. https://doi.org/10.1165/rcmb.2005-0158OE.
A.V. Tonder, A.M. Joubert, A.D. Cromarty. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Research Notes 8 (2015) 47. https://doi.org/10.1186/s13104-015-1000-8.
M. Ginouves, B. Carme, P. Couppie, G. Prevot. Comparison of tetrazolium salt assays for evaluation of drug activity against Leishmania spp. Journal of Clinical Microbiology 52 (2014) 2131-2138. https://doi.org/10.1128/jcm.00201-14.
Y. Shi, C. Su, W. Cui, H. Li, L. Liu, B. Feng, M. Liu, R. Su, L. Zhao. Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. Journal of Nanobiotechnology 12 (2014) 43. https://doi.org/10.1186/s12951-014-0043-7.
M. Chougule, B. Padhi, A. Misra. Nano-liposomal dry powder inhaler of tacrolimus: Preparation, characterization, and pulmonary pharmacokinetics. International Journal of Nanomedicine 2 (2007) 675-688. https://doi.org/10.2147/IJN.S2.4.675.
C. Zappa, S.A. Mousa. Non-small cell lung cancer: current treatment and future advances. Translational Lung Cancer Research 5 (2016) 288-300. https://doi.org/10.21037/tlcr.2016.06.07.
M. Tiseo, M. Bartolotti, F. Gelsomino, P. Bordi. Emerging role of gefitinib in the treatment of non-small-cell lung cancer (NSCLC). Drug Design, Development and Therapy 4 (2010) 81-98. https://doi.org/10.2147/DDDT.S6594.
C. Godugu, R. Doddapaneni, A.R. Patel, R. Singh, R. Mercer, M. Singh. Novel gefitinib formulation with improved oral bioavailability in treatment of A431 skin carcinoma. Pharmaceutical Research 33 (2016) 137-154. https://doi.org/10.1007/s11095-015-1771-6.
I.N. Maruyama. Mechanisms of activation of receptor tyrosine kinases: Monomers or dimers. Cells 3 (2014) 304-330. https://doi.org/10.3390/cells3020304.
P.P. Deshpande, S. Biswas, V.P. Torchilin. Current trends in the use of liposomes for tumor targeting. Nanomedicine 8 (2013) 1509-1528. https://doi.org/10.2217/nnm.13.118.
G. Bozzuto, A. Molinari. Liposomes as nanomedical devices. International Journal of Nanomedicine 10 (2015) 975-999. https://doi.org/10.2147/IJN.S68861.
J. Ni, L. Zhang. Evaluation of three small molecular drugs for targeted therapy to treat nonsmall cell lung cancer. Chinese Medical Journal 129 (2016) 332-340. https://doi.org/10.4103/0366-6999.174484.
J.H. Nam, S.Y. Kim, H. Seong. Investigation on physicochemical characteristics of a nanoliposome-based system for dual drug delivery. Nanoscale Research Letters 13 (2018) 101. https://doi.org/10.1186/s11671-018-2519-0.
S. Onoue, S. Yamada, H.K. Chan. Nanodrugs: pharmacokinetics and safety. International Journal of Nanomedicine 9 (2014) 1025-1037. https://doi.org/10.1186/s11671-018-2519-0.
S. Wang, R. Su, S. Nie, M. Sun, J. Zhang, D. Wu, N. Moustaid-Moussa. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. The Journal of Nutritional Biochemistry 25 (2014) 363-376. https://doi.org/10.1016/j.jnutbio.2013.10.002.
BA. Chan, B.G.M. Hughes. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Translational Lung Cancer Research 4 (2015) 36-54. https://doi.org/10.3978/j.issn.2218-6751.2014.05.01.
A.R. Patel, M.B. Chougule, I. Townley, P. Ram, G. Wang, S. Mandip. Efficacy of aerosolized celecoxib encapsulated nanostructured lipid carrier in non-small cell lung cancer in combination with docetaxel. Pharmaceutical Research 30 (2013) 1435-1446. https://doi.org/10.1007/s11095-013-0984-9.
A.R. Patel, M.B. Chougule, E. Lim, K.P. Francis, S. Safe, S. Mandip. Theranostic tumor homing nanocarriers for the treatment of lung cancer. Nanomedicine: Nanotechnology, Biology and Medicine 10 (2014) 1053-1063. https://doi.org/10.1016/j.nano.2013.12.002.
T. Yamaguchi, S. Isogai, T. Okamura, S. Uozu, Y. Mieno, T. Hoshino, Y. Goto, M. Hayashi, T. Nakanishi, K. Imaizumi. Pharmacokinetics of gefitinib in a patient with non-small cell lung cancer undergoing continuous ambulatory peritoneal dialysis. Case Reports in Oncology 8 (2015) 78-82. https://doi.org/10.1159/000375485.
A. Verma, G. Sharma, A. Jain, A. Tiwari, S. Saraf, P.K. Panda, O.P. Katare, S.K. Jain. Systematic optimization of cationic surface engineered mucoadhesive vesicles employing Design of Experiment (DoE): A preclinical investigation. International Journal of Biological Macromolecules 133 (2019) 1142-1155. https://doi.org/10.1016/j.ijbiomac.2019.04.118.
Ferreira SLC, Bruns RE, Ferreira HS, G.D. Matos, J.M. David, G.C. Brandão, E.P. da Silva, L.A. Portugal, P.S. Dos Reis, A.S. Souza, W.N. Dos Santos. Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta 597 (2007) 179-186. https://doi.org/10.1016/j.aca.2007.07.011.
S. Nandhakumar, M. Dhanaraju, C. Pavankumar, V. Sundar. Optimization of paclitaxel loaded poly (-caprolactone) nanoparticles using Box Behnken design design. Beni-Suef University Journal of Basic and Applied Sciences 6 (2017) 362-373. https://doi.org/10.1016/j.bjbas.2017.06.002.
G.E. Box, D.W. Behnken. Some new three level designs for the study of quantitative variables. Technometrics 2 (1960) 455-475. https://doi.org/10.1080/00401706.1960.10489912.
S.N. Azizi, N. Asemi. A Box-Behnken design for determining the optimum experimental condition of the fungicide (Vapam) sorption onto soil modified with perlite. Journal of Environmental Science and Health, Part B 47 (2012) 692-699. https://doi.org/10.1080/03601234.2012.669260.
X. Cao, D. Hou, L. Wang, S. Li, S. Sun, Q. Ping, Y. Xu. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biological Research 49 (2016) 32-41. https://doi.org/10.1186/s40659-016-0093-4.
S. Rohilla, H. Dureja. Effect of chitosan coating on the physiochemical characteristics of gefitinib loaded nanoliposomes. International Journal of Pharmaceutical Sciences and Research 9 (2018) 1000-1013. https://doi.org/10.13040/IJPSR.0975-8232.9(12).5098-10.
C. Dong, J.A. Rogers. Polymer-coated liposomes: stability and release of ASA from carboxymethyl chitin-coated liposomes. Journal of Controlled Release 17 (1991) 217-224. https://doi.org/10.1016/0168-3659(91)90140-9.
C. Dai, B. Wang, H. Zhao, B. Li, J. Wang. Preparation and characterization of liposomes-in-alginate (LIA) for protein delivery system. Colloids and Surfaces B: Biointerfaces 47 (2006) 205-210. https://doi.org/10.1016/j.colsurfb.2005.07.013.
M. Hasan, K. Elkhoury, C.J.F. Kahn, E. Arab-Tehrany, M. Linder. Preparation, characterization, and release kinetics of chitosan-coated nanoliposomes encapsulating curcumin in simulated environments. Molecules 24 (2019) 2023. https://doi.org/10.3390/molecules24102023.
M. Hasan, K. Elkhoury, N. Belhaj, C. Kahn, A. Tamayol, M. Barberi-Heyob, E. Arab-Tehrany, M. Linder. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells. Marine Drugs 18 (2020) 217. https://doi.org/10.3390/md18040217.
S. Rohilla, H. Dureja. Recent patents, formulation and characterization of nanoliposomes. Recent Patents in Drug Delivery and Formulations 9 (2015) 213-224. https://doi.org/10.2174/1872211309666150629105900.
B. Ding, X. Zhang, K. Hayat, S. Xia, C. Jia, M. Xie, C. Liu. Preparation, characterization and the stability of ferrous glycinate nanoliposomes. Journal of Food Engineering 102 (2011) 202-208. https://doi.org/10.1016/j.jfoodeng.2010.08.022.
M.M. Mady, M.M. Darwish. Effect of chitosan coating on the characteristics of DPPC liposomes. Journal of Advanced Research 1 (2010) 187-191. https://doi.org/10.1016/j.jare.2010.05.008.
G.H. Shin, S.K. Chung, J.T. Kim, H.J Joung, H.J. Park. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. ournal of Agricultural and Food Chemistry 61 (2013) 11119-11126. https://doi.org/10.1021/jf4035404.
S. Rohilla, R. Awasthi, M. Mehta, D.K. Chellappan, G. Gupta, M. Gulati, S.K. Singh, K. Anand, B.G. Oliver, K. Dua, H. Dureja. Preparation and evaluation of gefitinib containing nanoliposomal formulation for lung cancer therapy. BioNanoScience 12 (2022) 241-255. https://doi.org/10.1007/s12668-022-00938-6.
A. Haeri, B. Alinaghian, M. Daeihamed, S. Dadashzadeh. Preparation and characterization of stable nano-liposomal formulation of fluoxetine as a potential adjuvant therapy for drug-resistant tumors. Iranian Journal of Pharmaceutical Research 13 (2014) 3-14.
S. Khatak, M. Mehta, R. Awasthi, K.R. Paudel, S.K. Singh, M. Gulati, N.G. Hansbro, P.M. Hansbro, K. Dua, H. Dureja. Solid lipid nanoparticles containing anti-tubercular drugs attenuate the Mycobacterium marinum infection. Tuberculosis 125 (2020) 102008. https://doi.org/10.1016/j.tube.2020.102008.
Z. Hadian, M.A. Sahari, H.R. Moghimi, M. Barzegar. Formulation, characterization and optimization of liposomes containing eicosapentaenoic and docosahexaenoic acids; a methodology approach. Iranian Journal of Pharmaceutical Research 13 (2014) 393-404.
Y. Chan, S.W. Ng, D.K. Chellappan, T. Madheswaran, F. Zeeshan, P. Kumar, V. Pillay, G. Gupta, R. Wadhwa, M. Mehta, P. Wark. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. International Journal of Polymeric Materials and Polymeric Biomaterials 70 (2021) 754-763. https://doi.org/10.1080/00914037.2020.1765350.
M. Mehta, H. Dureja, M. Garg. Development and optimization of boswellic acid-loaded proniosomal gel. Drug Delivery 23 (2016) 3072-3081. https://doi.org/10.3109/10717544.2016.1149744.
A. Grover, L.Z. Benet. Intermittent drug dosing intervals guided by the operational multiple dosing half lives for predictable plasma accumulation and fluctuation. Journal of Pharmacokinetics and Pharmacodynamics 38 (2011) 369-383. https://doi.org/10.1007/s10928-011-9198-0.
Indian Pharmacopoeia. Government of India, Ministry of Health and Family Welfare. 2 (1996) 448.
X.L. Ni, L.X. Chen, H. Zhang, B. Yang, S. Xu, M. Wu. In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer. Drug Delivery 24 (2017) 1501-1512. https://doi.org/10.1080/10717544.2017.1384862.
R. Mirzayans, B. Andrais, A. Scott, A. Tessier, D. Murray. A sensitive assay for the evaluation of cytotoxicity and its pharmacologic modulation in human solid tumor-derived cell lines exposed to cancer-therapeutic agents. Journal of Pharmacy & Pharmaceutical Sciences 10 (2007) 298s-311s.
P. Skupin-Mrugalska, T.J. Minko. Development of liposomal vesicles for osimertinib delivery to EGFR mutation-positive lung cancer cells. Pharmaceutics 12 (2020) 939. https://doi.org/10.3390/pharmaceutics12100939.
R. Talens-Visconti, O. Diez-Sales, J.V. de Julian-Ortiz, A. Nacher. Nanoliposomes in cancer therapy: Marketed products and current clinical trials. International Journal of Molecular Sciences 23 (2022) 4249. https://doi.org/10.3390/ijms23084249.
M. Chiani, D. Norouzian, M.A. Shokrgozar, K. Azadmanesh, A. Najmafshar, M.R. Mehrabi, A. Akbarzadeh. Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artificial Cells Nanomedicine and Biotechnology 46 (2018) 757-763. https://doi.org/10.1080/21691401.2017.1337029.
M. Mozafari. In: Liposomes. Methods in Molecular Biology, V. Weissig, (Ed)., Humana Press, New Jersey, United States, 2010 p. 29-50. https://doi.org/10.1007/978-1-60327-360-2_2.
Y. Chan, S.W. Ng, D.K. Chellappan, T. Madheswaran, F. Zeeshan, P. Kumar, V. Pillay, G. Gupta, R. Wadhwa, M. Mehta, P. Wark. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. International Journal of Polymeric Materials and Polymeric Biomaterials 70 (2021) 754-763. https://doi.org/10.1080/00914037.2020.1765350.
L. Cheng, C. Jin, W. Lv, Q. Ding, X. Han. Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. PLoS One 6 (2011) e25433. https://doi.org/10.1371/journal.pone.0025433.
X. Zhou, B. Yung, Y. Huang, H. Li, X. Hu, G. Xiang, R.J. Lee. Novel liposomal gefitinib (L-GEF) formulations. Anticancer Research 32 (2012) 2919-2923.
H.K. Ha, J.W. Kim, M.R. Lee, W. Jun, W.J. Lee. Cellular uptake and cytotoxicity of β-lactoglobulin nanoparticles: The effects of particle size and surface charge. Asian-Australasian Journal of Animal Sciences 28 (2015) 420-427. https://doi.org/10.5713/ajas.14.0761.
C. He, Y. Hu, L. Yin, C. Tang, C. Yin. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31 (2010) 3657-3666. https://doi.org/10.1016/j.biomaterials.2010.01.065.
S. Gulzar, S. Benjakul. Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization. Food Chemistry 310 (2020) 125916. https://doi.org/10.1016/j.foodchem.2019.125916.
X. Chen, L.Q. Zou, J. Niu, W. Liu, S.F. Peng, C.M. Liu. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 20 (2015) 14293-14311. https://doi.org/10.3390/molecules200814293.
Published
Issue
Section
How to Cite
Funding data
-
Maharishi Dayanand University
Grant numbers F.No.-43-485/2014 (SR)