Natural Polymer Derivative-based pH responsive Nanoformulations Entrapped Diketo-tautomers of 5-fluorouracil for Enhanced Cancer Therapy
DOI:
https://doi.org/10.5599/admet.2554Keywords:
Oxidized sodium alginate, polymeric nanoparticles, anticancer activity, pH-responsive drug delivery
Abstract
Background and purpose: Despite significant advancements in cancer therapies, chemotherapeutics continue to be the mainstay for treating cancer patients, with 5-fluorouracil (5-FU) being commonly used for various cancers. However, its limited ability to penetrate cell membranes and its short half-life, caused by rapid metabolism, necessitate frequent administration of high doses to maintain effective therapeutic levels. This study aimed to synthesize oxidized sodium alginate (OSA) derivatives to create OSA nanoparticles loaded with 5-FU (OSANP@ 5-FU), promoting diketo tautomers, and evaluate their photophysical properties, release profile, and anticancer activity with minimal toxicity. Experimental approach: The investigation encompassed physicochemical characterization, encapsulation efficiency, 5-FU release kinetics at pH 2.2 and 7.4, cell viability assessment via MTT assay in V79 cells, and in vitro anticancer efficacy in the A375 cell line. Key results: Steady-state absorption and emission confirmed the presence of advantageous diketone tautomers of 5-FU, indicating radiative transitions from the second singlet excited state to the ground state (S2S0) and the drug's encapsulation within the polymeric nanostructure. Dynamic light scattering revealed that OSA nanoparticles, initially 177.8 nm, grew to 226.6 nm after encapsulating 5-FU, retaining high zeta potential for stability. With a 68% encapsulation efficiency, in vitro studies showed 46 to 54 % of 5-FU released across different pH levels within 510 minutes. Conclusion: In acidic conditions, there is a greater release of 5-FU than neutral pH levels, indicating a pH-responsive release profile beneficial for cancer treatment, with the release mechanism of OSANPs following Fickian diffusion as identified by a Korsmeyer-Peppas mathematical model and the formu¬lation showing improved therapeutic efficacy.
Downloads
References
N. Chintapally, M. Nuwayhid, V. Arroju, V.K. Muddu, P. Gao, B.Y. Reddy, C. Sunkavalli. State of Cancer Care in India and Opportunities for Innovation. Future Oncology 19 (2023) 2593-2606. https://doi.org/10.2217/fon-2023-0047
M. Abdel-Wahab, C.N. Coleman, J.G. Eriksen, P. Lee, R. Kraus, E. Harsdorf, B. Lee, A. Dicker, E. Hahn, J.P. Agarwal, P.G.S. Prasanna, M. MacManus, P. Keall, N.A. Mayr, B.A. Jereczek-Fossa, F. Giammarile, I.A. Kim, A. Aggarwal, G. Lewison, J.J. Lu, D. Guedes de Castro, F.-M. Kong, H. Afifi, H. Sharp, V. Vanderpuye, T. Olasinde, F. Atrash, L. Goethals, B.W. Corn. Addressing challenges in low-income and middle-income countries through novel radiotherapy research opportunities. The Lancet Oncology 25 (2024) e270-e280. https://doi.org/10.1016/S1470-2045(24)00038-X
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 71 (2021) 209-249. https://doi.org/10.3322/caac.21660
S. Rangamani, D. Huliyappa, V. Kulothungan, S. Saravanan, P.K. Murugan, R. Mahadevan, C. Rachel Packiaseeli, E. Bobby, K. Sunitha, A.K. Mallick, S.D. Nayak, S.K. Swain, M. Behera, B.K. Nath, A. Swami, A.K. Kalwar, B. Difoesa, V. Sardana, D. Maheshwari, B. Bhushan, D. Mittal, R.N. Chaurasia, L.P. Meena, K.S. Vinay Urs, R.R. Koli, N. Suresh Kumar, P. Mathur. Stroke incidence, mortality, subtypes in rural and urban populations in five geographic areas of India (2018–2019): results from the National Stroke Registry Programme. The Lancet Regional Health - Southeast Asia 23 (2024) 100308. https://doi.org/10.1016/j.lansea.2023.100308
T.C. Dakal, B. Dhabhai, A. Pant, K. Moar, K. Chaudhary, V. Yadav, V. Ranga, N.K. Sharma, A. Kumar, P.K. Maurya, J. Maciaczyk, I.G.H. Schmidt-Wolf, A. Sharma. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm 5 (2024) e582. https://doi.org/10.1002/mco2.582
C. Swanton, E. Bernard, C. Abbosh, F. André, J. Auwerx, A. Balmain, D. Bar-Sagi, R. Bernards, S. Bullman, J. DeGregori, C. Elliott, A. Erez, G. Evan, M.A. Febbraio, A. Hidalgo, M. Jamal-Hanjani, J.A. Joyce, M. Kaiser, K. Lamia, J.W. Locasale, S. Loi, I. Malanchi, M. Merad, K. Musgrave, K.J. Patel, S. Quezada, J.A. Wargo, A. Weeraratna, E. White, F. Winkler, J.N. Wood, K.H. Vousden, D. Hanahan. Embracing cancer complexity: Hallmarks of systemic disease. Cell 187 (2024) 1589-1616. https://doi.org/10.1016/j.cell.2024.02.009
P. Bisoyi, CHAPTER 1 - A brief tour guide to cancer disease, in: B. Jain, S. Pandey (Eds.) Understanding Cancer, Academic Press2022, pp. 1-20.
D.T. Debela, S.G.Y. Muzazu, K.D. Heraro, M.T. Ndalama, B.W. Mesele, D.C. Haile, S.K. Kitui, T. Manyazewal. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine 9 (2021) 20503121211034366. https://doi.org/10.1177/20503121211034366
M. Darvishi, F. Tosan, P. Nakhaei, D.A. Manjili, S.A. Kharkouei, A. Alizadeh, S. Ilkhani, F. Khalafi, F.A. Zadeh, S.-G. Shafagh. Recent progress in cancer immunotherapy: Overview of current status and challenges. Pathology - Research and Practice 241 (2023) 154241. https://doi.org/10.1016/j.prp.2022.154241
G. Bocci, R.S. Kerbel. Pharmacokinetics of metronomic chemotherapy: a neglected but crucial aspect. Nature Reviews Clinical Oncology 13 (2016) 659-673. https://doi.org/10.1038/nrclinonc.2016.64
A. Yadav, S. Singh, H. Sohi, S. Dang. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 23 (2021) 25. https://doi.org/10.1208/s12249-021-02174-9
G. Ioele, M. Chieffallo, M.A. Occhiuzzi, M. De Luca, A. Garofalo, G. Ragno, F. Grande. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 27 (2022) 5436. https://doi.org/10.3390/molecules27175436
L. Zhang, B. Ye, Z. Chen, Z.-S. Chen. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharmaceutica Sinica B 13 (2023) 982-997. https://doi.org/10.1016/j.apsb.2022.10.002
F. Jubeen, A. Liaqat, F. Amjad, M. Sultan, S.Z. Iqbal, I. Sajid, M.B. Khan Niazi, F. Sher. Synthesis of 5-Fluorouracil Cocrystals with Novel Organic Acids as Coformers and Anticancer Evaluation against HCT-116 Colorectal Cell Lines. Crystal Growth & Design 20 (2020) 2406-2414. https://doi.org/10.1021/acs.cgd.9b01570
D.B. Longley, D.P. Harkin, P.G. Johnston. 5-Fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer 3 (2003) 330-338. https://doi.org/10.1038/nrc1074
Y.Y. Liang, S. Bacanu, L. Sreekumar, A.D. Ramos, L. Dai, M. Michaelis, J. Cinatl, T. Seki, Y. Cao, C.R. Coffill. CETSA interaction proteomics define specific RNA-modification pathways as key components of fluorouracil-based cancer drug cytotoxicity. Cell Chemical Biology 29 (2022) 572-585. e578. https://doi.org/10.1016/j.chembiol.2021.06.007
S. Vodenkova, T. Buchler, K. Cervena, V. Veskrnova, P. Vodicka, V. Vymetalkova. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacology & Therapeutics 206 (2020) 107447. https://doi.org/10.1016/j.pharmthera.2019.107447
C. Zhong, Z. Xie, S. Duan. H1Innovative approaches to combat anti-cancer drug resistance: Targeting lncRNA and autophagy. Clinical and Translational Medicine 13 (2023) e1445. https://doi.org/10.1002/ctm2.1445
M. Samy, H.A.M. Abdallah, M.M.H. Ayoub, M.E. Vylegzhanina, A.Y. Volkov, T. Sukhanova. Eco-Friendly Route for Encapsulation of 5-Fluorouracil Into Polycaprolactone Nanoparticles. The Egyptian Journal of Chemistry 63 (2020) 255-267. https://doi.org/10.21608/ejchem.2019.19380.2182
A. Sabeti Aghabozorgi, M. Moradi Sarabi, R. Jafarzadeh-Esfehani, S. Koochakkhani, M. Hassanzadeh, S. Kavousipour, E. Eftekhar. Molecular determinants of response to 5-fluorouracil-based chemotherapy in colorectal cancer: The undisputable role of micro-ribonucleic acids. World J Gastrointest Oncol 12 (2020) 942-956. https://doi.org/10.4251/wjgo.v12.i9.942
A. Girigoswami, K. Girigoswami. Potential Applications of Nanoparticles in Improving the Outcome of Lung Cancer Treatment. Genes 14 (2023) 1370. https://doi.org/10.3390/genes14071370
P. Sharmiladevi, M. Breghatha, K. Dhanavardhini, R. Priya, K. Girigoswami, A. Girigoswami. Efficient Wormlike Micelles for the Controlled Delivery of Anticancer Drugs. Nanoscience & Nanotechnology-Asia 11 (2021) 350-356. https://doi.org/10.2174/2210681210999200728115601
S. Anjum, F. Naseer, T. Ahmad, F. Jahan, H. Qadir, R. Gul, K. Kousar, A. Sarwar, A. Shabbir. Enhancing therapeutic efficacy: sustained delivery of 5-fluorouracil (5-FU) via thiolated chitosan nanoparticles targeting CD44 in triple-negative breast cancer. Scientific reports 14 (2024) 11431. https://doi.org/10.1038/s41598-024-55900-1
S. Khan, A. Madni, M.N. Aamir, S. Khan, F.-u.-D. Ahmad, A. Basit, N. Jan, H. Shah, A. Shafiq, M. Anwar. Design and evaluation of sustained-release lipid-PLGA hybrid nanoparticles for enhanced anticancer efficacy of 5-fluorouracil. Particulate Science and Technology 42 (2024) 269-287. https://doi.org/10.1080/02726351.2023.2230924
M. Li, Y. Liu, Y. Liu, J. Lin, L. Ding, S. Wu, J. Gong. Fabrication of targeted and pH responsive lysozyme-hyaluronan nanoparticles for 5-fluorouracil and curcumin co-delivery in colorectal cancer therapy. International journal of biological macromolecules 254 (2024) 127836. https://doi.org/10.1016/j.ijbiomac.2023.127836
M. Daneshmehr, M. Pazhang, S. Mollaei, M. Ebadi, Y. Pazhang. Targeted delivery of 5-fluorouracil and shikonin by blended and coated chitosan/pectin nanoparticles for treatment of colon cancer. International journal of biological macromolecules 270 (2024) 132413. https://doi.org/10.1016/j.ijbiomac.2024.132413
A. Blachman, A.M. Birocco, S. Curcio, S.A. Camperi, P.D. Gianvincenzo, J.A. Rodriguez, G.R. Barredo-Vacchelli, G. Cenci, A. Sosnik, S. Moya, G.C. Calabrese. Dermatan Sulfate/Chitosan Nanoparticles Loaded with an Anti-Inflammatory Peptide Increase the Response of Human Colorectal Cancer Cells to 5-Fluorouracil. Macromolecular Bioscience 23 (2023) 2300193. https://doi.org/10.1002/mabi.202300193
S. Manivannan, S. Narayan. Studies on polyethylene glycol crosslinked chitosan nanoparticles for co-delivery of docetaxel and 5-fluorouracil with synergistic effect against cancer. Macromolecular Research 32 (2024) 371-392. https://doi.org/10.1007/s13233-023-00234-6
S. Srivastava, S. Mohammad, A.B. Pant, P.R. Mishra, G. Pandey, S. Gupta, S. Farooqui. Co-delivery of 5-Fluorouracil and Curcumin Nanohybrid Formulations for Improved Chemotherapy Against Oral Squamous Cell Carcinoma. Journal of Maxillofacial and Oral Surgery 17 (2018) 597-610. https://doi.org/10.1007/s12663-018-1126-z
A.A. Valencia-Lazcano, D. Hassan, M. Pourmadadi, A. shamsabadipour, R. Behzadmehr, A. Rahdar, D.I. Medina, A.M. Díez-Pascual. 5-Fluorouracil nano-delivery systems as a cutting-edge for cancer therapy. European journal of medicinal chemistry 246 (2023) 114995. https://doi.org/10.1016/j.ejmech.2022.114995
A.C.d. Mattos, C. Altmeyer, T.T. Tominaga, N.M. Khalil, R.M. Mainardes. Polymeric nanoparticles for oral delivery of 5-fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. European journal of pharmaceutical sciences 84 (2016) 83-91. https://doi.org/10.1016/j.ejps.2016.01.012
W.V. Sathyaraj, L. Prabakaran, J. Bhoopathy, S. Dharmalingam, R. Karthikeyan, R. Atchudan. Therapeutic Efficacy of Polymeric Biomaterials in Treating Diabetic Wounds—An Upcoming Wound Healing Technology. Polymers 15 (2023) 1205. https://doi.org/10.3390/polym15051205
J. Bhoopathy, W. Vedakumari Sathyaraj, B.V. Yesudhason, S. Rajendran, S. Dharmalingam, J. Seetharaman, R. Muthu, R. Murugesan, S. Raghunandhakumar, S.K. Anandasadagopan. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds – preparation, characterisation, and evaluation. Artificial Cells, Nanomedicine, and Biotechnology 52 (2024) 35-45. https://doi.org/10.1080/21691401.2023.2293784
K. Harini, S.Y. Alomar, M. Vajagathali, S. Manoharadas, A. Thirumalai, K. Girigoswami, A. Girigoswami. Niosomal Bupropion: Exploring Therapeutic Frontiers through Behavioral Profiling. Pharmaceuticals 17 (2024) 366. https://doi.org/10.3390/ph17030366
M. Pourmadadi, S. Ostovar, G. Ruiz-Pulido, D. Hassan, M. Souri, A.-L.E. Manicum, R. Behzadmehr, S. Fathi-karkan, A. Rahdar, D.I. Medina, S. Pandey. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery. Inorganic Chemistry Communications 155 (2023) 110999. https://doi.org/10.1016/j.inoche.2023.110999
L. Sun, H. Liu, Y. Ye, Y. Lei, R. Islam, S. Tan, R. Tong, Y.-B. Miao, L. Cai. Smart nanoparticles for cancer therapy. Signal transduction and targeted therapy 8 (2023) 418. https://doi.org/10.1038/s41392-023-01642-x
A. Thirumalai, K. Harini, P. Pallavi, P. Gowtham, K. Girigoswami, A. Girigoswami. Bile salt-mediated surface-engineered bilosome-nanocarriers for delivering therapeutics. Nanomedicine Journal 11 (2024) 1-12. https://doi.org/10.22038/nmj.2023.71268.1763
A. Thirumalai, K. Girigoswami, P. Pallavi, K. Harini, P. Gowtham, A. Girigoswami. Cancer therapy with iRGD as a tumor-penetrating peptide. Bulletin du Cancer 110 (2023) 1288-1300. https://doi.org/10.1016/j.bulcan.2023.08.009
P. Pallavi, K. Harini, P. Gowtham, K. Girigoswami, A. Girigoswami. Fabrication of Polymersomes: A Macromolecular Architecture in Nanotherapeutics. Chemistry 4 (2022) 1028-1043. https://doi.org/10.3390/chemistry4030070
H. A, S.P.S. Sofini, D. Balasubramanian, A. Girigoswami, K. Girigoswami. Biomedical applications of natural and synthetic polymer based nanocomposites. Journal of Biomaterials Science, Polymer Edition 35 (2024) 269-294. https://doi.org/10.1080/09205063.2023.2283910
R. Sakthi Devi, A. Girigoswami, S. Meenakshi, B. Deepika, K. Harini, P. Gowtham, P. Pallavi, K. Girigoswami. Beneficial effects of bioinspired silver nanoparticles on zebrafish embryos including a gene expression study. ADMET and DMPK 12 (2024) 177-192. https://doi.org/10.5599/admet.2102
P. Gowtham, K. Harini, A. Thirumalai, P. Pallavi, K. Girigoswami, A. Girigoswami. Synthetic routes to theranostic applications of carbon-based quantum dots. ADMET and DMPK 11 (2023) 457–485. https://doi.org/10.5599/admet.1747
K. Girigoswami, A. Girigoswami. Encapsulation of Beta-lactam Antibiotic Amoxicillin in Chitosan-alginate Nanohydrogels to Improve Antibacterial Efficacy. Nanomedicine Research Journal 8 (2023) 335-344. https://doi.org/10.22034/nmrj.2023.04.002
J.R. Lakkakula, P. Gujarathi, P. Pansare, S. Tripathi. A comprehensive review on alginate-based delivery systems for the delivery of chemotherapeutic agent: Doxorubicin. Carbohydrate polymers 259 (2021) 117696. https://doi.org/10.1016/j.carbpol.2021.117696
V. Hegde, U.T. Uthappa, T. Altalhi, H.-Y. Jung, S.S. Han, M.D. Kurkuri. Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications. Materials Today Communications 33 (2022) 104813. https://doi.org/10.1016/j.mtcomm.2022.104813
K.H. Bouhadir, K.Y. Lee, E. Alsberg, K.L. Damm, K.W. Anderson, D.J. Mooney. Degradation of Partially Oxidized Alginate and Its Potential Application for Tissue Engineering. Biotechnology Progress 17 (2001) 945-950. https://doi.org/10.1021/bp010070p
D.J. Mercy, K. Harini, S. Madhumitha, C. Anitha, J. Iswariya, K. Girigoswami, A. Girigoswami. pH-responsive polymeric nanostructures for cancer theranostics. Journal of Metals, Materials and Minerals 33 (2023) 1-15. https://doi.org/10.55713/jmmm.v33i2.1609
S. Malik, K. Muhammad, Y. Waheed. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules 28 (2023) 6624. https://doi.org/10.3390/molecules28186624
P. Gowtham, K. Girigoswami, P. Pallavi, K. Harini, I. Gurubharath, A. Girigoswami. Alginate-Derivative Encapsulated Carbon Coated Manganese-Ferrite Nanodots for Multimodal Medical Imaging. Pharmaceutics 14 (2022) 2550. https://doi.org/10.3390/pharmaceutics14122550
P. Gowtham, K. Girigoswami, A.D. Prabhu, P. Pallavi, A. Thirumalai, K. Harini, A. Girigoswami. Hydrogels of Alginate Derivative‐Encased Nanodots Featuring Carbon‐Coated Manganese Ferrite Cores with Gold Shells to Offer Antiangiogenesis with Multimodal Imaging‐Based Theranostics. Advanced Therapeutics 7 (2024) 2400054. https://doi.org/10.1002/adtp.202400054
M. Ge, Y. Li, C. Zhu, G. Liang, J.A. S.M, G. Hu, Y. Gui, J.R. M. Preparation of organic-modified magadiite–magnetic nanocomposite particles as an effective nanohybrid drug carrier material for cancer treatment and its properties of sustained release mechanism by Korsmeyer–Peppas kinetic model. Journal of Materials Science 56 (2021) 14270-14286. https://doi.org/10.1007/s10853-021-06181-w
T. Jaiganesh, J. Daisy Vimala Rani, A. Girigoswami. Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 92 (2012) 29-32. https://doi.org/10.1016/j.saa.2012.02.044
N. Markova, V. Enchev, I. Timtcheva. Oxo−Hydroxy Tautomerism of 5-Fluorouracil: Water-Assisted Proton Transfer. The Journal of Physical Chemistry A 109 (2005) 1981-1988. https://doi.org/10.1021/jp046132m
M.V. Sultanbaev, S.S. Ostakhov, S.K. Gantsev, F.A. Khalilullin, V.P. Kazakov. Fluorescent study of the keto-enol equilibrium of 5-fluorouracil tautomers in aqueous solutions. High Energy Chemistry 44 (2010) 383-386. https://doi.org/10.1134/S001814391005005X
S.S. Ostakhov, S.K. Gantsev, V.P. Kazakov, M.V. Sultanbaev, G.V. Khamitova, R.S. Ishmuratova. Fluorescence of 5-fluorouracil upon the transition from the second singlet excited state S2 to the ground state. High Energy Chemistry 45 (2011) 130-132. https://doi.org/10.1134/S0018143911020111
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.