Understanding yeast shells: structure, properties and applications

Authors

  • Larissa Silva de Macêdo Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0003-1660-4901
  • Samara Sousa de Pinho Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0001-5576-3652
  • Anna Jéssica Duarte Silva Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0002-8341-7877
  • Ingrid Andrêssa de Moura Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0002-0715-8674
  • Benigno Cristofer Flores Espinoza Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0001-8185-9818
  • Maria da Conceição Viana Invenção Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0001-9360-1275
  • Pedro Vinícius Silva Novis Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0003-0397-6482
  • Marco Antonio Turiah Machado da Gama Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0001-9739-3100
  • Matheus do Nascimento Carvalho Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0001-6031-3349
  • Lígia Rosa Sales Leal Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0002-4453-8238
  • Bruna Isabel Santos Cruz Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0003-4554-1807
  • Beatriz Mendonça Alves Bandeira Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0009-0009-1941-7790
  • Vanessa Emanuelle Pereira Santos Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0001-9505-6119
  • Antonio Carlos de Freitas Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil https://orcid.org/0000-0002-4957-9549

DOI:

https://doi.org/10.5599/admet.2118

Keywords:

nanocapsules, delivery vehicle, β-glucans, encapsulation, immunostimulator
Graphical Abstract

Abstract

Background and purpose: The employment of yeasts for biomedical purposes has become increasingly frequent for the delivery of prophylactic and therapeutic products. Its structural components, such as β-glucans, mannan, and chitin, can be explored as immunostimulators that show safety and low toxicity. Besides, this system minimizes antigen degradation after administration, facilitating the delivery to the target cells. Review approach: This review sought to present molecules derived from yeast, called yeast shells (YS), and their applications as carrier vehicles for drugs, proteins, and nucleic acids for immunotherapy purposes. Furthermore, due to the diversity of information regarding the production and immunostimulation of these compounds, a survey of the protocols and immune response profiles generated was presented. Key results: The use of YS has allowed the development of strategies that combine efficiency and effectiveness in antigen delivery. The capsular structure can be recognized and phagocytized by dendritic cells and macrophages. In addition, the combination with different molecules, such as nanoparticles or even additional adjuvants, improves the cargo loading, enhancing the system. Activation by specific immune pathways can also be achieved by different administration routes. Conclusion: Yeast derivatives combined in different ways can increase immunostimulation, enhancing the delivery of medicines and vaccine antigens. These aspects, combined with the simplicity of the production steps, make these strategies more accessible to be applied in the prevention and treatment of various diseases.

Downloads

Download data is not yet available.

References

Y. Tan, L. Chen, K. Li, B. Lou, Y. Liu, Z. Liu. Yeast as carrier for drug delivery and vaccine construction. Journal of Controlled Release 346 (2022) 358-379. https://doi.org/10.1016/j.jconrel.2022.04.032.

R. Kumar, P. Kumar. Yeast-based vaccines: New perspective in vaccine development and application. FEMS yeast Research 19 (2019) foz007. https://doi.org/10.1093/femsyr/foz007.

Spiros Jamas, Gary R. Ostroff, Jr. D. Davidson Easson. Glucan drug delivery system and adjuvant, US5032401A, 1989. https://patents.google.com/patent/US5032401 (accessed December 10, 2023).

C. Sabu, P. Mufeedha, K. Pramod. Yeast-inspired drug delivery: biotechnology meets bioengineering and synthetic biology. Expert Opinion on Drug Delivery 16 (2019) 27-41. https://doi.org/10.1080/17425247.2019.1551874.

G. Nelson, S.C. Duckham, M.E.D. Crothers. Microencapsulation in Yeast Cells and Applications in Drug Delivery. In: Polymeric drug delivery - ACS Symposium Series (2006) pp. 268-281. https://doi.org/10.1021/bk-2006-0923.ch019.

A.J.D. Silva, L.S. de Macêdo, L.R.S. Leal, A.L.S. de Jesus, A.C. Freitas. Yeasts as a promising delivery platform for DNA and RNA vaccines. FEMS yeast Research 21 (2021) foab018. https://doi.org/10.1093/femsyr/foab018.

A.J.D. Silva, C.K. da S. Rocha, A.C. de Freitas. Standardization and Key Aspects of the Development of Whole Yeast Cell Vaccines. Pharmaceutics 14 (2022) 2792. https://doi.org/10.3390/pharmaceutics14122792.

E.R. Soto, G.R. Ostroff. Characterization of Multilayered Nanoparticles Encapsulated in Yeast Cell Wall Particles for DNA Delivery. Bioconjugate Chemistry 19 (2008) 840-848. https://doi.org/10.1021/bc700329p.

G.J. Tesz, M. Aouadi, M. Prot, S.M. Nicoloro, E. Boutet, S.U. Amano, A. Goller, M. Wang, C.-A. Guo, W.E. Salomon, J.V. Virbasius, R.A. Baum, M.J. O’Connor, E. Soto, G.R. Ostroff, M.P. Czech. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochemical Journal 436 (2011) 351-362. https://doi.org/10.1042/BJ20110352.

X. Zhou, K. Ling, M. Liu, X. Zhang, J. Ding, Y. Dong, Z. Liang, J. Li, J. Zhang. Targeted Delivery of Cisplatin-Derived Nanoprecursors via a Biomimetic Yeast Microcapsule for Tumor Therapy by the Oral Route. Theranostics 9 (2019) 6568-6586. https://doi.org/10.7150/thno.35353.

E. Alexander. Yeasts in nanotechnology-enabled oral vaccine and gene delivery. Bioengineered 12 (2021) 8325-8335. https://doi.org/10.1080/21655979.2021.1985816.

N. Hu, L. Zhu, L. Zhang, J. Wang, Y. Wang, J. Luo, L. He, Z. Hao, L. Zhang. Immunomodulatory effect and safety of TNF-α RNAi mediated by oral yeast microcapsules in rheumatoid arthritis therapy. Materials Today Bio 16 (2022) 100384. https://doi.org/10.1016/j.mtbio.2022.100384.

X. Zhou, X. Zhang, S. Han, Y. Dou, M. Liu, L. Zhang, J. Guo, Q. Shi, G. Gong, R. Wang, J. Hu, X. Li, J. Zhang. Yeast Microcapsule-Mediated Targeted Delivery of Diverse Nanoparticles for Imaging and Therapy via the Oral Route. Nano Letters 17 (2017) 1056-1064. https://doi.org/10.1021/acs.nanolett.6b04523.

L. Zhang, H. Peng, M. Feng, W. Zhang, Y. Li. Yeast microcapsule-mediated oral delivery of IL-1β shRNA for post-traumatic osteoarthritis therapy. Molecular Therapy - Nucleic Acids 23 (2021) 336-346. https://doi.org/10.1016/j.omtn.2020.11.006.

H.M. Zakria, B. Han, F. Yue, L. Mu, Y. Fang, X. Li, K. Xu, Z. Zhang. Significant body mass increase by oral administration of a cascade of shIL21-MSTN yeast-based DNA vaccine in mice. Biomedicine & Pharmacotherapy 118 (2019) 109147. https://doi.org/10.1016/j.biopha.2019.109147.

L. He, Y. Bai, L. Xia, J. Pan, X. Sun, Z. Zhu, J. Ding, C. Qi, C. Tang. Oral administration of a whole glucan particle (WGP)-based therapeutic cancer vaccine targeting macrophages inhibits tumor growth. Cancer Immunology, Immunotherapy 71 (2022) 2007-2028. https://doi.org/10.1007/s00262-021-03136-7.

L. Zhang, W. Zhang, H. Peng, Y. Li, T. Leng, C. Xie, L. Zhang. Oral Gene Therapy of HFD-Obesity via Nonpathogenic Yeast Microcapsules Mediated shRNA Delivery. Pharmaceutics 13 (2021) 1536. https://doi.org/10.3390/pharmaceutics13101536.

Gary Ostroff. Drug delivery product and methods, US20050281781A1, 2004. https://patents.google.com/patent/US20050281781A1/en (accessed December 10, 2023).

J. Wang, M. Li, F. Zheng, C. Niu, C. Liu, Q. Li, J. Sun. Cell wall polysaccharides: before and after autolysis of brewer’s yeast. World Journal of Microbiology and Biotechnology 34 (2018) 137. https://doi.org/10.1007/s11274-018-2508-6.

F.M. Klis, P. Mol, K. Hellingwerf, S. Brul. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews 26 (2002) 239-256. https://doi.org/10.1111/j.1574-6976.2002.tb00613.x.

N.A.R. Gow, J.-P. Latge, C.A. Munro. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum 5(3) (2017). https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.

R. De Smet, L. Allais, C.A. Cuvelier. Recent advances in oral vaccine development. Human Vaccines & Immunotherapeutics 10 (2014) 1309-1318. https://doi.org/10.4161/hv.28166.

E. De Marco Castro, P.C. Calder, H.M. Roche. β‐1,3/1,6‐Glucans and Immunity: State of the Art and Future Directions. Molecular Nutrition & Food Research 65 (2021) 1901071. https://doi.org/10.1002/mnfr.201901071.

Y. Liu, Q. Wu, X. Wu, S.A. Algharib, F. Gong, J. Hu, W. Luo, M. Zhou, Y. Pan, Y. Yan, Y. Wang. Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. International Journal of Biological Macromolecules 173 (2021) 445-456. https://doi.org/10.1016/j.ijbiomac.2021.01.125.

A. Gani, A. Shah, M. Ahmad, B.A. Ashwar, F.A. Masoodi. β-d-glucan as an enteric delivery vehicle for probiotics. International Journal of Biological Macromolecules 106 (2018) 864-869. https://doi.org/10.1016/j.ijbiomac.2017.08.093.

V. Vetvicka, L. Vannucci, P. Sima. β‐glucan as a new tool in vaccine development. Scandinavian Journal of Immunology 91 (2020) e12833. https://doi.org/10.1111/sji.12833.

P.N. Lipke, R. Ovalle. Cell Wall Architecture in Yeast: New Structure and New Challenges. Journal of Bacteriology 180 (1998) 3735-3740. https://doi.org/10.1128/JB.180.15.3735-3740.1998.

G. Lesage, H. Bussey. Cell Wall Assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews 70 (2006) 317-343. https://doi.org/10.1128/MMBR.00038-05.

P. Orlean. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall. Genetics 192 (2012) 775-818. https://doi.org/10.1534/genetics.112.144485.

E. Cabib, A. Durán. Synthase III-dependent Chitin Is Bound to Different Acceptors Depending on Location on the Cell Wall of Budding Yeast. Journal of Biological Chemistry 280 (2005) 9170-9179. https://doi.org/10.1074/jbc.M414005200.

Y. Liu, Q. Wu, X. Wu, S.A. Algharib, F. Gong, J. Hu, W. Luo, M. Zhou, Y. Pan, Y. Yan, Y. Wang. Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. International Journal of Biological Macromolecules 173 (2021) 445-456. https://doi.org/10.1016/j.ijbiomac.2021.01.125.

S. Sung, R. Nelson, S. Silverstein. Yeast Mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages. The Journal of Cell Biology 96 (1983) 160-166. https://doi.org/10.1083/jcb.96.1.160.

S. Brattgjerd, O. Evensen, A. Lauve. Effect of injected yeast glucan on the activity of macrophages in Atlantic salmon, Salmo salar L., as evaluated by in vitro hydrogen peroxide production and phagocytic capacity. Immunology 83 (1994) 288-94.

M.S. Graus, M.J. Wester, D.W. Lowman, D.L. Williams, M.D. Kruppa, C.M. Martinez, J.M. Young, H.C. Pappas, K.A. Lidke, A.K. Neumann. Mannan Molecular Substructures Control Nanoscale Glucan Exposure in Candida. Cell Reports 24 (2018) 2432-2442.e5. https://doi.org/10.1016/j.celrep.2018.07.088.

J.M. Bain, J. Louw, L.E. Lewis, B. Okai, C.A. Walls, E.R. Ballou, L.A. Walker, D. Reid, C.A. Munro, A.J.P. Brown, G.D. Brown, N.A.R. Gow, L.P. Erwig. Candida albicans Hypha Formation and Mannan Masking of β-Glucan Inhibit Macrophage Phagosome Maturation. MBio 5(6) (2014) e01874-14. https://doi.org/10.1128/mBio.01874-14.

S.E. Davis, A. Hopke, S.C. Minkin, A.E. Montedonico, R.T. Wheeler, T.B. Reynolds. Masking of β(1-3)-Glucan in the Cell Wall of Candida albicans from Detection by Innate Immune Cells Depends on Phosphatidylserine. Infection and Immunity 82 (2014) 4405-4413. https://doi.org/10.1128/IAI.01612-14.

E.R. Soto, A.C. Caras, L.C. Kut, M.K. Castle, G.R. Ostroff. Glucan Particles for Macrophage Targeted Delivery of Nanoparticles. Journal of Drug Delivery 2012 (2012) 143524 . https://doi.org/10.1155/2012/143524.

L. Zhu, Z. Lei, X. Xia, Y. Zhang, Y. Chen, B. Wang, J. Li, G. Li, G. Yang, G. Cao, Z. Yin. Yeast Shells Encapsulating Adjuvant AS04 as an Antigen Delivery System for a Novel Vaccine against Toxoplasma Gondii. ACS Applied Materials & Interfaces 13 (2021) 40415-40428. https://doi.org/10.1021/acsami.1c12366.

E.R. Soto, F. Rus, Z. Mirza, G.R. Ostroff. Yeast Particles for Encapsulation of Terpenes and Essential Oils. Molecules 28 (2023) 2273. https://doi.org/10.3390/molecules28052273.

Y. Pan, X. Li, T. Kang, H. Meng, Z. Chen, L. Yang, Y. Wu, Y. Wei, M. Gou. Efficient delivery of antigen to DCs using yeast-derived microparticles. Scientific Reports 5 (2015) 10687. https://doi.org/10.1038/srep10687.

E.R. Soto, O. O’Connell, F. Dikengil, P.J. Peters, P.R. Clapham, G.R. Ostroff. Targeted Delivery of Glucan Particle Encapsulated Gallium Nanoparticles Inhibits HIV Growth in Human Macrophages. Journal of Drug Delivery 2016 (2016) 8520629. https://doi.org/10.1155/2016/8520629.

Z. Hong, M. Yu, Z. Chen, W. Guo, J. Wang, Y. Feng, X. Kong. Specifically targeted delivery of protein to phagocytic macrophages. International Journal of Nanomedicine 10(1) (2015) 1743. https://doi.org/10.2147/IJN.S75950.

Z. Yang, M. Xu, Z. Jia, Y. Zhang, L. Wang, H. Zhang, J. Wang, M. Song, Y. Zhao, Z. Wu, L. Zhao, Z. Yin, Z. Hong. A novel antigen delivery system induces strong humoral and CTL immune responses. Biomaterials 134 (2017) 51-63. https://doi.org/10.1016/j.biomaterials.2017.04.035.

W. Qiao, S. Ji, Y. Zhao, T. Hu. Conjugation of β-glucan markedly increase the immunogencity of meningococcal group Y polysaccharide conjugate vaccine. Vaccine 33 (2015) 2066-2072. https://doi.org/10.1016/j.vaccine.2015.02.045.

K. Lee, Y. Kwon, J. Hwang, Y. Choi, K. Kim, H.-J. Koo, Y. Seo, H. Jeon, J. Choi. Synthesis and Functionalization of β-Glucan Particles for the Effective Delivery of Doxorubicin Molecules. ACS Omega 4 (2019) 668-674. https://doi.org/10.1021/acsomega.8b02712.

C. Tan, J. Wang, B. Sun. Polysaccharide dual coating of yeast capsules for stabilization of anthocyanins. Food Chemistry 357 (2021) 129652. https://doi.org/10.1016/j.foodchem.2021.129652.

Y. Xie, X. Hu, H. He, F. Xia, Y. Ma, J. Qi, X. Dong, W. Zhao, Y. Lu, W. Wu. Tracking translocation of glucan microparticles targeting M cells: implications for oral drug delivery. Journal of Materials Chemistry B 4 (2016) 2864-2873. https://doi.org/10.1039/C5TB02706C.

Gary Ostroff, Donald Tipper. Yeast Cell Particles As Oral Delivery Vehicles For Antigens, US20080044438A1, 2007. https://patents.google.com/patent/US20080044438A1/en (accessed December 11, 2023).

A.S. Chowdhury, R. Geetha Bai, T. Islam, M. Abir, M. Narayan, Z. Khatun, M. Nurunnabi. Bile acid linked β-glucan nanoparticles for liver specific oral delivery of biologics. Biomaterials Science 10 (2022) 2929-2939. https://doi.org/10.1039/D2BM00316C.

F. Yang, P.C.K. Cheung. Fungal β-Glucan-Based Nanotherapeutics: From Fabrication to Application. Journal of Fungi 9 (2023) 475. https://doi.org/10.3390/jof9040475.

J. Hwang, J. Son, Y. Seo, Y. Jo, K. Lee, D. Lee, M.S. Khan, S. Chavan, C. Park, A. Sharma, A.A. Gilad, J. Choi. Functional silica nanoparticles conjugated with beta-glucan to deliver anti-tuberculosis drug molecules. Journal of Industrial and Engineering Chemistry 58 (2018) 376-385. https://doi.org/10.1016/j.jiec.2017.09.051.

Z. Plavcová, P. Šalamúnová, I. Saloň, F. Štěpánek, J. Hanuš, J. Hošek. Curcumin encapsulation in yeast glucan particles promotes its anti-inflammatory potential in vitro. International Journal of Pharmaceutics 568 (2019) 118532. https://doi.org/10.1016/j.ijpharm.2019.118532.

H. Liu, Z. Meng, H. Wang, S. Zhang, Z. Huang, X. Geng, R. Guo, Z. Wu, Z. Hong. Robust Immune Responses Elicited by a Hybrid Adjuvant Based on β-Glucan Particles from Yeast for the Hepatitis B Vaccine. ACS Applied Bio Materials 4 (2021) 3614-3622. https://doi.org/10.1021/acsabm.1c00111.

Z. Jing, S. Wang, K. Xu, Q. Tang, W. Li, W. Zheng, H. Shi, K. Su, Y. Liu, Z. Hong. A Potent Micron Neoantigen Tumor Vaccine GP‐Neoantigen Induces Robust Antitumor Activity in Multiple Tumor Models. Advanced Science 9 (2022) 2201496. https://doi.org/10.1002/advs.202201496.

S.-H. Young, G.R. Ostroff, P.C. Zeidler-Erdely, J.R. Roberts, J.M. Antonini, V. Castranova. A Comparison of the Pulmonary Inflammatory Potential of Different Components of Yeast Cell Wall*. Journal of Toxicology and Environmental Health, Part A 70 (2007) 1116-1124. https://doi.org/10.1080/15287390701212224.

S. Young, R. Rai, N. Nitin. Bioaccessibility of curcumin encapsulated in yeast cells and yeast cell wall particles. Food Chemistry 309 (2020) 125700. https://doi.org/10.1016/j.foodchem.2019.125700.

R. De Smet, T. Demoor, S. Verschuere, M. Dullaers, G.R. Ostroff, G. Leclercq, L. Allais, C. Pilette, M. Dierendonck, B.G. De Geest, C.A. Cuvelier. β-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. Journal of Controlled Release 172 (2013) 671-678. https://doi.org/10.1016/j.jconrel.2013.09.007.

J. Xu, Q. Ma, Y. Zhang, Z. Fei, Y. Sun, Q. Fan, B. Liu, J. Bai, Y. Yu, J. Chu, J. Chen, C. Wang. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nature Communications 13 (2022) 110. https://doi.org/10.1038/s41467-021-27750-2.

H. Lei, B. Xie, T. Gao, Q. Cen, Y. Ren. Yeast display platform technology to prepare oral vaccine against lethal H7N9 virus challenge in mice. Microbial Cell Factories 19 (2020) 53. https://doi.org/10.1186/s12934-020-01316-1.

C. Sabu, D. Raghav, U.S. Jijith, P. Mufeedha, P.P. Naseef, K. Rathinasamy, K. Pramod. Bioinspired oral insulin delivery system using yeast microcapsules. Materials Science and Engineering: C 103 (2019) 109753. https://doi.org/10.1016/j.msec.2019.109753.

Z. Mirza, E.R. Soto, F. Dikengil, S.M. Levitz, G.R. Ostroff. Beta-Glucan Particles as Vaccine Adjuvant Carriers. In Vaccines for Invasive Fungal Infections, Springer (2017), pp. 143-157. https://doi.org/10.1007/978-1-4939-7104-6_11.

N.A.R. Gow, J.-P. Latge, C.A. Munro. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum 5 (2017). https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.

G. Angrand, A. Quillévéré, N. Loaëc, C. Daskalogianni, A. Granzhan, M.-P. Teulade-Fichou, R. Fahraeus, R. Prado Martins, M. Blondel. Sneaking Out for Happy Hour: Yeast-Based Approaches to Explore and Modulate Immune Response and Immune Evasion. Genes 10 (2019) 667. https://doi.org/10.3390/genes10090667.

L.D. Halder, E.A.H. Jo, M.Z. Hasan, M. Ferreira-Gomes, T. Krüger, M. Westermann, D.I. Palme, G. Rambach, N. Beyersdorf, C. Speth, I.D. Jacobsen, O. Kniemeyer, B. Jungnickel, P.F. Zipfel, C. Skerka. Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nature Communications 11 (2020) 2331. https://doi.org/10.1038/s41467-020-16241-5.

S.M. Levitz, H. Huang, G.R. Ostroff, C.A. Specht. Exploiting fungal cell wall components in vaccines. Seminars in Immunopathology 37 (2015) 199-207. https://doi.org/10.1007/s00281-014-0460-6.

T.A. Korolenko, N.P. Bgatova, V. Vetvicka. Glucan and Mannan—Two Peas in a Pod. International Journal of Molecular Sciences 20 (2019) 3189. https://doi.org/10.3390/ijms20133189.

I. Vendele, J.A. Willment, L.M. Silva, A.S. Palma, W. Chai, Y. Liu, T. Feizi, M. Spyrou, M.H.T. Stappers, G.D. Brown, N.A.R. Gow. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLOS Pathogens 16 (2020) e1007927. https://doi.org/10.1371/journal.ppat.1007927.

X. Hu, J. Zhang. Yeast capsules for targeted delivery: the future of nanotherapy? Nanomedicine 12 (2017) 955-957. https://doi.org/10.2217/nnm-2017-0059.

E. Soares, R. Cordeiro, H. Faneca, O. Borges. Polymeric nanoengineered HBsAg DNA vaccine designed in combination with β glucan. International Journal of Biological Macromolecules 122 (2019) 930-939. https://doi.org/10.1016/j.ijbiomac.2018.11.024.

C.-Y. Hung, H. Zhang, N. Castro-Lopez, G.R. Ostroff, P. Khoshlenar, A. Abraham, G.T. Cole, A. Negron, T. Forsthuber, T. Peng, J.N. Galgiani, N.M. Ampel, J.-J. Yu. Glucan-Chitin Particles Enhance Th17 Response and Improve Protective Efficacy of a Multivalent Antigen (rCpa1) against Pulmonary Coccidioides posadasii Infection. Infection and Immunity 86 (2018). https://doi.org/10.1128/IAI.00070-18.

G.T. Cole, C.-Y. Hung, S.D. Sanderson, B.J. Hurtgen, M. Wüthrich, B.S. Klein, G.S. Deepe, G.R. Ostroff, S.M. Levitz. Novel Strategies to Enhance Vaccine Immunity against Coccidioidomycosis. PLoS Pathogens 9 (2013) e1003768. https://doi.org/10.1371/journal.ppat.1003768.

S. Chaichian, B. Moazzami, F. Sadoughi, H. Haddad Kashani, M. Zaroudi, Z. Asemi. Functional activities of beta-glucans in the prevention or treatment of cervical cancer. Journal of Ovarian Research 13 (2020) 24. https://doi.org/10.1186/s13048-020-00626-7.

G.C.-F. Chan, W.K. Chan, D.M.-Y. Sze. The effects of β-glucan on human immune and cancer cells. Journal of Hematology & Oncology 2 (2009) 25. https://doi.org/10.1186/1756-8722-2-25.

Z. Zhu, L. He, Y. Bai, L. Xia, X. Sun, C. Qi. Yeast β-glucan modulates macrophages and improves antitumor NK-cell responses in cancer. Clinical and Experimental Immunology 214 (2023) 50-60. https://doi.org/10.1093/cei/uxad080.

H. Cheng, L. Sun, D. Shen, A. Ren, F. Ma, G. Tai, L. Fan, Y. Zhou. Beta-1,6 glucan converts tumor-associated macrophages into an M1-like phenotype. Carbohydrate Polymers 247 (2020) 116715. https://doi.org/10.1016/j.carbpol.2020.116715.

A. Geller, R. Shrestha, J. Yan. Yeast-Derived β-Glucan in Cancer: Novel Uses of a Traditional Therapeutic. International Journal of Molecular Sciences 20 (2019) 3618. https://doi.org/10.3390/ijms20153618.

S. Ahadian, J.A. Finbloom, M. Mofidfar, S.E. Diltemiz, F. Nasrollahi, E. Davoodi, V. Hosseini, I. Mylonaki, S. Sangabathuni, H. Montazerian, K. Fetah, R. Nasiri, M.R. Dokmeci, M.M. Stevens, T.A. Desai, A. Khademhosseini. Micro and nanoscale technologies in oral drug delivery. Advanced Drug Delivery Reviews 157 (2020) 37-62. https://doi.org/10.1016/j.addr.2020.07.012.

B. Zhang, H. Pan, Z. Chen, T. Yin, M. Zheng, L. Cai. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. Science Advances 9(8) (2023). https://doi.org/10.1126/sciadv.adc8978.

Y. Wu, P. Li, Z. Jiang, X. Sun, H. He, P. Yan, Y. Xu, Y. Liu. Bioinspired yeast-based β-glucan system for oral drug delivery. Carbohydrate Polymers 319 (2023) 121163. https://doi.org/10.1016/j.carbpol.2023.121163.

E.R. Soto, C.A. Specht, F. Rus, C.K. Lee, A. Abraham, S.M. Levitz, G.R. Ostroff. An efficient (nano) silica - In glucan particles protein encapsulation approach for improved thermal stability. Journal of Controlled Release 357 (2023) 175-184. https://doi.org/10.1016/j.jconrel.2023.03.027.

E.R. Soto, C.A. Specht, C.K. Lee, S.M. Levitz, G.R. Ostroff. One Step Purification—Vaccine Delivery System. Pharmaceutics 15 (2023) 1390. https://doi.org/10.3390/pharmaceutics15051390.

F. Yang, L. Meng, S. Lin, F. Wu, J. Liu. Polyethyleneimine-complexed charge-reversed yeast cell walls for the enhanced oral delivery of pseudovirus-based antigens. Chemical Communications 57 (2021) 12768-12771. https://doi.org/10.1039/D1CC04901A.

M. Aouadi, G.J. Tesz, S.M. Nicoloro, M. Wang, M. Chouinard, E. Soto, G.R. Ostroff, M.P. Czech. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458 (2009) 1180-1184. https://doi.org/10.1038/nature07774.

H. Liu, Z. Jia, C. Yang, M. Song, Z. Jing, Y. Zhao, Z. Wu, L. Zhao, D. Wei, Z. Yin, Z. Hong. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses. Biomaterials 167 (2018) 32-43. https://doi.org/10.1016/j.biomaterials.2018.03.014.

X. Zhang, X. Xu, Y. Chen, Y. Dou, X. Zhou, L. Li, C. Li, H. An, H. Tao, H. Hu, X. Li, J. Zhang. Bioinspired yeast microcapsules loaded with self-assembled nanotherapies for targeted treatment of cardiovascular disease. Materials Today 20 (2017) 301-313. https://doi.org/10.1016/j.mattod.2017.05.006.

J.L. Cohen, Y. Shen, M. Aouadi, P. Vangala, M. Tencerova, S.U. Amano, S.M. Nicoloro, J.C. Yawe, M.P. Czech. Peptide- and Amine-Modified Glucan Particles for the Delivery of Therapeutic siRNA. Molecular Pharmaceutics 13 (2016) 964-978. https://doi.org/10.1021/acs.molpharmaceut.5b00831.

C. Sabu, D. Raghav, U.S. Jijith, P. Mufeedha, P.P. Naseef, K. Rathinasamy, K. Pramod. Bioinspired oral insulin delivery system using yeast microcapsules. Materials Science and Engineering C 103 (2019) 109753. https://doi.org/10.1016/j.msec.2019.109753.

D. Liu, S. Lu, L. Zhang, L. Zhang, M. Ji, X.-G. Liu, Z. Yu, R. Liu. A biomimetic yeast shell vaccine coated with layered double hydroxides induces a robust humoral and cellular immune response against tumors. Nanoscale Advances 2 (2020) 3494-3506. https://doi.org/10.1039/D0NA00249F.

Z. Lei, L. Zhu, P. Pan, Z. Ruan, Y. Gu, X. Xia, S. Wang, W. Ge, Y. Yao, F. Luo, H. Xiao, J. Guo, Q. Ding, Z. Yin, Y. Li, Z. Luo, Q. Zhang, X. Chen, J. Wu. A vaccine delivery system promotes strong immune responses against SARS‐CoV‐2 variants. Journal of Medical Virology 95 (2023). https://doi.org/10.1002/jmv.28475.

T.J. Vreeland, G.T. Clifton, D.F. Hale, R.C. Chick, A.T. Hickerson, J.L. Cindass, A.M. Adams, P.M.K. Bohan, R.H.I. Andtbacka, A.C. Berger, J.W. Jakub, J.J. Sussman, A.M. Terando, T. Wagner, G.E. Peoples, M.B. Faries. A Phase IIb Randomized Controlled Trial of the TLPLDC Vaccine as Adjuvant Therapy After Surgical Resection of Stage III/IV Melanoma: A Primary Analysis. Annals of Surgical Oncology 28 (2021) 6126-6137. https://doi.org/10.1245/s10434-021-09709-1.

N. Austriaco. Yeast oral vaccines against infectious diseases. Frontiers in Microbiology 14 (2023) e28475. https://doi.org/10.3389/fmicb.2023.1150412.

L. Zhang, H. Peng, W. Zhang, Y. Li, L. Liu, T. Leng. Yeast Cell wall Particle mediated Nanotube-RNA delivery system loaded with miR365 Antagomir for Post-traumatic Osteoarthritis Therapy via Oral Route. Theranostics 10 (2020) 8479-8493. https://doi.org/10.7150/thno.46761.

D.B. Scariot, H. Volpato, N.S. Fernandes, D. Lazarin-Bidóia, O. Borges, M. do C. Sousa, F.A. Rosa, A.P. Jacomini, S.O. Silva, T. Ueda-Nakamura, A.F. Rubira, C. V. Nakamura. Oral treatment with T6-loaded yeast cell wall particles reduces the parasitemia in murine visceral leishmaniasis model. Scientific Reports 9 (2019) 20080. https://doi.org/10.1038/s41598-019-56647-w.

J. Yan, D.J. Allendorf, B. Brandley. Yeast whole glucan particle (WGP) β-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert Opinion on Biological Therapy 5 (2005) 691-702. https://doi.org/10.1517/14712598.5.5.691.

Y. Pu, X. Fan, Z. Zhang, Z. Guo, Q. Pan, W. Gao, K. Luo, B. He. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. Journal of Controlled Release 354 (2023) 1-18. https://doi.org/10.1016/j.jconrel.2022.12.044.

N. Muthusamy, S. Haldar, T.K. Ghosh, M.R. Bedford. Effects of hydrolysed Saccharomyces cerevisiae yeast and yeast cell wall components on live performance, intestinal histo-morphology and humoral immune response of broilers. British Poultry Science 52 (2011) 694-703. https://doi.org/10.1080/00071668.2011.633072.

S. Bi, J. Zhang, Y. Qu, B. Zhou, X. He, J. Ni. Yeast cell wall product enhanced intestinal IgA response and changed cecum microflora species after oral vaccination in chickens. Poultry Science 99 (2020) 6576-6585. https://doi.org/10.1016/j.psj.2020.09.075.

S. Bi, J. Zhang, L. Zhang, K. Huang, J. Li, L. Cao. Yeast cell wall upregulated cell-mediated immune responses to Newcastle disease virus vaccine. Poultry Science 101 (2022) 101712. https://doi.org/10.1016/j.psj.2022.101712.

A.S. Cordeiro, Y. Farsakoglu, J. Crecente-Campo, M. de la Fuente, S.F. González, M.J. Alonso. Carboxymethyl-β-glucan/chitosan nanoparticles: new thermostable and efficient carriers for antigen delivery. Drug Delivery and Translational Research 11 (2021) 1689-1702. https://doi.org/10.1007/s13346-021-00968-9.

T. Lima, S.B. Gunnarsson, E. Coelho, D. V. Evtuguin, A. Correia, M.A. Coimbra, T. Cedervall, M. Vilanova. β-Glucan-Functionalized Nanoparticles Down-Modulate the Proinflammatory Response of Mononuclear Phagocytes Challenged with Candida albicans. Nanomaterials 12 (2022) 2475. https://doi.org/10.3390/nano12142475.

M. Colaço, A.P. Marques, S. Jesus, A. Duarte, O. Borges. Safe-by-Design of Glucan Nanoparticles: Size Matters When Assessing the Immunotoxicity. Chemical Research in Toxicology 33 (2020) 915-932. https://doi.org/10.1021/acs.chemrestox.9b00467.

H. Chen, Y. Sun, X. Xu, Q. Ye. Targeted delivery of methotrexate by modified yeast β-glucan nanoparticles for rheumatoid arthritis therapy. Carbohydrate Polymers 284 (2022) 119183. https://doi.org/10.1016/j.carbpol.2022.119183.

M. Zhang, J.A. Kim, A.Y.-C. Huang. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles. Frontiers in Immunology 9 (2018) 341. https://doi.org/10.3389/fimmu.2018.00341.

M. Donini, F. Pettinella, G. Zanella, S.C. Gaglio, C. Laudanna, M. Jimenez-Carretero, C. Jimenez-Lopez, M. Perduca, S. Dusi. Effects of Magnetic Nanoparticles on the Functional Activity of Human Monocytes and Dendritic Cells. International Journal of Molecular Sciences 24 (2023) 1358. https://doi.org/10.3390/ijms24021358.

Y. Su, F. Yang, M. Wang, P.C.K. Cheung. Cancer immunotherapeutic effect of carboxymethylated β-d-glucan coupled with iron oxide nanoparticles via reprogramming tumor-associated macrophages. International Journal of Biological Macromolecules 228 (2023) 692-705. https://doi.org/10.1016/j.ijbiomac.2022.12.154.

Z.K. Hamza, A.S. Hathout, G. Ostroff, E. Soto, B.A. Sabry, M.A. El‐Hashash, N.S. Hassan, S.E. Aly. Assessment of the protective effect of yeast cell wall β‐glucan encapsulating humic acid nanoparticles as an aflatoxin B 1 adsorbent in vivo. Journal of Biochemical and Molecular Toxicology 36 (2022) e22941. https://doi.org/10.1002/jbt.22941.

R. Zhang, X. Qin, J. Lu, H. Xu, S. Zhao, X. Li, C. Yang, L. Kong, Y. Guo, Z. Zhang. Chemodynamic/Photothermal Synergistic Cancer Immunotherapy Based on Yeast Microcapsule-Derived Au/Pt Nanoparticles. ACS Applied Materials & Interfaces 15 (2023) 24134-24148. https://doi.org/10.1021/acsami.3c02646.

Z. Liu, W. Lian, Q. Long, R. Cheng, G. Torrieri, B. Zhang, A. Koivuniemi, M. Mahmoudzadeh, A. Bunker, H. Gao, H. He, Y. Chen, J. Hirvonen, R. Zhou, Q. Zhao, X. Ye, X. Deng, H.A. Santos. Promoting Cardiac Repair through Simple Engineering of Nanoparticles with Exclusive Targeting Capability toward Myocardial Reperfusion Injury by Thermal Resistant Microfluidic Platform. Advanced Functional Materials 32 (2022) 2204666. https://doi.org/10.1002/adfm.202204666.

Downloads

Published

15-02-2024 — Updated on 15-02-2024

How to Cite

Silva de Macêdo, L., Sousa de Pinho, S., Duarte Silva , A. J., de Moura, I. A., Flores Espinoza, B. C., Viana Invenção, M. da C., Silva Novis, P. V., Turiah Machado da Gama, M. A., do Nascimento Carvalho, M., Rosa Sales Leal, L., Santos Cruz, B. I., Mendonça Alves Bandeira , B., Pereira Santos, V. E., & de Freitas, A. C. (2024). Understanding yeast shells: structure, properties and applications. ADMET and DMPK, 12(2), 299–317. https://doi.org/10.5599/admet.2118

Issue

Section

Reviews

Funding data