Polyvinyl alcohol nanoparticles loaded with propolis extract: Fabrication, characterization and antimicrobial activity

Original scientific paper


  • Benazir Subaşı-Zarbaliyev Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Istanbul, Turkey https://orcid.org/0009-0000-7004-6862
  • Gozde Kutlu Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Istanbul, Turkey https://orcid.org/0000-0001-7111-1726
  • Fatih Törnük Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Istanbul, Turkey https://orcid.org/0000-0002-7313-0207




Encapsulation, electrospraying, thermal property, antimicrobial activity, morphological properties
Graphical Abstract


Background and Purpose: Propolis has high potential beneficial bioactive properties such as anti-oxidative, anti­microbial, and anti-tumour activities. However, the bitter taste and the insolubility nature of propolis in water lead to some limitations in their usage in functional food applications. Experimental Approach: Herein, we evaluated the effects of nanoencapsulation of propolis at the different concentration levels (0, 0.4, 0.8, 1.0, and 1.2 %) into the polyvinyl alcohol (PVA) nanoparticles using the electrospraying method, on the structural, physical, antioxidant, antimicrobial and thermal properties. Key Results: The results revealed that the fabricated nanocapsules (PVA-NPs) obtained under optimal conditions had uniform size distribution and unstable particles with small particle size between 104-258 nm, a polydispersity index <0.317, and a zeta potential between -5 and +5 mV. The maximum encapsulation efficiency of PVA-NPs was about 25.32 % for 1 % of the initial propolis loading level. DSC thermal experiments showed an increase in the thermal stability of the propolis loaded PVA nanoparticles as compared to the neat PVA nanoparticles. The percent inhibition of DPPH radical scavenging activity of the nanocapsules was between 80 and 89 %. SEM analysis revealed that PVA-NPs had a spherical shape with a rough surface and were composed of long and thin fibres at nanometric diameters. FT-IR analysis showed that no indications of any chemical reactions were found between the constituents of the core and wall material due to their physical mixing. Antibacterial efficacy was evaluated by the Broth dilution method and PVA-NPs exhibited good inhibitory activity against S. aureus at low concentration ratios, whereas it had no inhibitory activity against E. coli O157:H7. Conclusion: PVA-NPs fabricated using the electrospraying technique can be used for the development of a new promising natural and bioactive agent in the food and pharmaceutical industry.


Download data is not yet available.


B.F. Gibbs, S. Kermasha, B. Inteaz Al. Encapsulation in the food industry. International Journal of Food Sciences and Nutrition 50(3) (1999) 213-224. https://doi.org/10.1080/096374899101256

R. Biswas, M. Alam, A. Sarkar, I. Haque, M. Hasan, M. Hoque. Application of nanotechnology in food: processing, preservation, packaging and safety assessment. Heliyon 8(11) (2022) e11795. https://doi.org/10.1016/j.heliyon.2022.e11795

O. Salata, O. Tools of Nanotechnology: Electrospray. Current Nanoscience 1(1) (2005) 25-33. https://doi.org/10.2174/1573413052953192

N. Bhardwaj, S. C. Kundu. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 28 (3) (2010) 325-347. https://doi.org/10.1016/j.biotechadv.2010.01.004

M.T. Yilmaz, A. Yilmaz, P.K. Akman, F. Bozkurt, E. Dertli, A. Basahel, B. Al-sasi, O. Taylan, O. Sagdic. Electrospraying method for fabrication of essential oil loaded-chitosan nanoparticle delivery systems characterized by molecular, thermal, morphological and antifungal properties. Innovative Food Science & Emerging Technologies 52 (2019) 166-178. https://doi.org/10.1016/j.ifset.2018.12.005

P. Supaphol, S. Chuangchote. On the electrospinning of poly(vinyl alcohol) nanofiber mats: A revisit. Journal of Applied Polymer Science 108(2) (2008) 969-978. https://doi.org/10.1002/app.27664

V. Sedlařík, N. Saha, I. Kuřitka, P. Sáha. Preparation and Characterization of Poly (vinyl alcohol)/Lactic Acid Compounded Polymeric Films. International Journal of Polymer Analysis and Characterization 11(4) (2006) 253-270. https://doi.org/10.1080/10236660600750190

G. A. Burdock. Review of the biological properties and toxicity of bee propolis (propolis). Food and Chemical Toxicology 36(4) (1998) 347-363. https://doi.org/10.1016/S0278-6915(97)00145-2

A.F. Wali, A. Mushtaq, M.U. Rehman, S. Akbar, M.H. Masoodi. Bee propolis (Bee’s glue): a phytochemistry review. Journal of Critical Reviews 4(4) (2017) 9-13. https://www.jcreview.com/admin/Uploads/Files/61c7167c4e7c21.89487709.pdf

P.P. Wieczorek, N. Hudz, O. Yezerska, V. Horčinová-Sedláčková, M. Shanaida, O. Korytniuk, I. Jasicka-Misiak. Chemical Variability and Pharmacological Potential of Propolis as a Source for the Development of New Pharmaceutical Products. Molecules 27(5) (2022) 1600. https://doi.org/10.3390/molecules27051600

R. Bilginer, A. Arslan Yildiz. A facile method to fabricate Propolis enriched biomimetic PVA architectures by co-electrospinning. Materials Letters (2020) 128191. https://doi.org/10.1016/j.matlet.2020.128191

V. M. Busch, A. Pereyra-Gonzalez, N. Šegatin, P.R. Santagapita, N. PoklarUlrih, M.P. Buera. Propolis encapsulation by spray drying: Characterization and stability. LWT 75 (2017) 227-235. https://doi.org/10.1016/j.lwt.2016.08.055

M.A. Çakır, N. C. Icyer, F. Tornuk. Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. International journal of biological macromolecules 151 (2020) 230-238. https://doi.org/10.1016/j.ijbiomac.2020.02.096

M.P. Nori, C.S. Favaro-Trindade, S. Matias de Alencar, M. Thomazini, J.C. de Camargo Balieiro, C.J. Contreras Castillo. Microencapsulation of propolis extract by complex coacervation. LWT - Food Science and Technology 44(2) (2011) 429-435. https://doi.org/10.1016/j.lwt.2010.09.010

D. Sözeri-Atik, E. Bölük, F. Bildik, F. Altay, E. Torlak, A.A. Kaplan, B. Kopuk, İ. Palabıyık. Particle morphology and antimicrobial properties of electrosprayed propolis, Food Packaging and Shelf Life 33 (2022) 100881. https://doi.org/10.1016/j.fpsl.2022.100881

S.J. Yang, J.J. Wu, Y.C. Wang, C.F. Huang, T.M. Wu, C.J. Shieh, C.M.J. Chang. Encapsulation of propolis flavonoids in a water soluble polymer using pressurized carbon dioxide anti-solvent crystallization. The Journal of Supercritical Fluids 94 (2014) 138-146. https://doi.org/10.1016/j.supflu.2014.07.009

N. Durán, P.D. Marcato, C.M. Buffo, M.M. De Azevedo, E. Espósito. Poly (epsilon-caprolactone)/propolis extract: microencapsulation and antibacterial activity evaluation, Pharmazie 62 (2007) 287-290. https://doi.org/10.1691/ph.2007.4.6058

G. C. Feyzioglu, F. Tornuk. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT - Food Science and Technology 70 (2016) 104-110. https://doi.org/10.1016/j.lwt.2016.02.037

S.M. Jafari, E. Assadpoor, Y. He, B. Bhandari. Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Drying Technology 26(7) (2008) 816-835. https://doi.org/10.1080/07373930802135972

U. Baysan, A. ZungurBastıoğlu, N. Ö. Coşkun, D. KonukTakma, E. ÜlkeryıldızBalçık, H. Sahin-Nadeem, M. Koç. The effect of coating material combination and encapsulation method on propolis powder properties. Powder Technology 384 (2021) 332-341. https://doi.org/10.1016/j.powtec.2021.02.018

S. Hasani, S.M. Ojagh, M. Ghorbani. Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics. International Journal of Biological Macromolecules 115 (2018) 143-151. https://doi.org/10.1016/j.ijbiomac.2018.04.038

M. Wrona, M.J. Cran, C. Nerín, S.W. Bigger. Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydrate Polymers 156 (2017) 108-117. https://doi.org/10.1016/j.carbpol.2016.08.094

T.G. Do Nascimento, P.F. da Silva, L. F. Azevedo, L. G. da Rocha, I.C. de Moraes Porto, T.F.A. Lima e Moura, I.D. Basílio-Júnior, L.A. Grillo, C.B. Dornelas, E.J. Fonseca, E. de Jesus Oliveira, A.T. Zhang, D.G. Watson. Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity. Nanoscale Research Letters 11(1) (2016). http://dx.doi.org/10.1186/s11671-016-1517-3

H. Zhang, Y. Fu, Y. Xu, F. Niu, Z. Li, C. Ba, B. Jin, G. Chen, X. Li. One-step assembly of zein/case-inate/alginate nanoparticles for encapsulation and improved bioaccessibility of propolis. Food & Function 10 (2018) 635-645. http://dx.doi.org/10.1039/C8FO01614C

M. C. F. Gonçalves, O. Mertins, A.R. Pohlmann, N.P. Silveira, S.S. Guterres. Chitosan Coated Liposomes as an Innovative Nanocarrier for Drugs. Journal of Biomedical Nanotechnology 8(2) (2012) 240-250. https://doi.org/10.1166/jbn.2012.1375

M. Soleimanifar, S.M. Jafari, E. Assadpour. Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization. Food Hydrocolloids (2019) 105572. https://doi.org/10.1016/j.foodhyd.2019.105572

U.Baysan, F. Elmas F, M. Koç.The effect of spray drying conditions on physicochemical properties of encapsulated propolis powder. Journal of Food Processing Engineering 42(4) (2019) e13024. https://doi.org/10.1111/jfpe.13024

N. Shakoury, M.A. Aliyari, M. Salami, Z. Emam-Djomeh, B. Vardhanabhuti, A.A. Moosavi-Movahedi. Encapsulation of propolis extract in whey protein nanoparticles, Lebensmittel-Wissenschaft und -Technologie 158 (2022) 113138. https://doi.org/10.1016/j.lwt.2022.113138

Z. Liu, J. Chen, G. Knothe, X. Nie, J. Jiang. Synthesis of Epoxidized Cardanol and Its Antioxidative Properties for Vegetable Oils and Biodiesel. ACS Sustainable Chemistry & Engineering 4(3) (2016) 901-906. https://doi.org/10.1021/acssuschemeng.5b00991

B.C. Smith (2011). Fundamentals of Fourier Transform Infrared Spectroscopy, Second Edition, CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b10777

H. Barud, A.M. de Araújo Júnior, S. Saska, L.B. Mestieri, J. A. D. B. Campos, R. M. de Freitas, N.U. Ferreira, A.P. Nascimento, F.G. Miguel, Vaz M. M. de O.L.L., E.A. Varizon, F. Marquele-Oliveira, A.M.M. Gaspar, S.J.L. Ribeiro, A. A. Berretta. Antimicrobial Brazilian Propolis (EPP-AF) Containing Biocellulose Membranes as Promising Biomaterial for Skin Wound Healing. Evidence-Based Complementary and Alternative Medicine (2013) 703024. https://doi.org/10.1155/2013/703024

S.M.A. El-Sheikh, A.A.F.A. El-Alim, H.A.F. Ibrahim, E.A. Mobarez, D.M.A. El-Masry, W.A. El-Sayed. Preparation, characterization and antibacterial activity of chitosan nanoparticle and chitosan-propolis nanocomposite. Advences in Animal Veterinary Sciences 7(s2) (2019) 183-190. https://nexusacademicpublishers.com/uploads/files/AAVS_7_s2_183-190.pdf

A. A. Aytekin, S. T. Tanrıverdi, F. AydınKöse, D. Kart, İ. Eroğlu, Ö. Özer. Propolis Loaded Liposomes: Evaluation of Antimicrobial and Antioxidant Activities. Journal of Liposome Research 30(2) (2020) 107-116. https://doi.org/10.1080/08982104.2019.1599012

J. K. S. Andrade, M. Denadai, G. R. S. Andrade, C. da Cunha Nascimento, P. F. Barbosa, M. S. Jesus, N. Narain. Development and characterization of microencapsules containing spray dried powder obtained from Brazilian brown, green and red propolis. Food Research International 109 (2018) 278-287. https://doi.org/10.1016/j.foodres.2018.04.048

I. Przybyłek, T.M. Karpiński. Antibacterial Properties of Propolis. Molecules 24(11) (2019) 2047. https://doi.org/10.3390/molecules24112047

S. Bakirdere, M.T. Yilmaz, M. F. Tornuk, S. Keyf, A. Yilmaz, O. Sagdic, B. Kocabas. Molecular characterization of silver-stearate nanoparticles (AgStNPs): A hydrophobic and antimicrobial material against foodborne pathogens. Food Research International 76 (2015) 439-448. https://doi.org/10.1016/j.foodres.2015.08.005

R. Béji-Srairi, I. Younes, M. Snoussi, K. Yahyaoui, G. Borchard, R. Ksouri, V. Frachet, M.K. Wided. Ethanolic extract of Tunisian propolis: chemical composition, antioxidant, antimicrobial and antiproliferative properties. Journal of Apicultural Research 59(5) (2020) 917-927. https://doi.org/10.1080/00218839.2020.1732572

S. Bouchelaghem. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans, Saudi Journal of Biological Sciences 29(4) (2022) 1936-1946. https://doi.org/10.1016/j.sjbs.2021.11.063

M.S. Almuhayawi. Propolis as a novel antibacterial agent. Saudi Journal of Biological Sciences 27(11) (2020) 3079-3086. https://doi.org/10.1016/j.sjbs.2020.09.016

L.C. Lu, Y.W. Chen, C.C. Chou. Antibacterial activity of propolis against Staphylococcus aureus. International Journal of Food Microbiology 102(2) (2005) 213-220. https://doi.org/10.1016/j.ijfoodmicro.2004.12.017

M. Wilm. Principles of Electrospray Ionization. Molecular & Cellular Proteomics 10(7) (2011) M111.009407. https://doi.org/10.1074/mcp.M111.009407

A.K. Jain, V. Sood, M. Bora, R. Vasita, D.S. Katti. Electrosprayed inulin microparticles for microbiota triggered targeting of colon. Carbohydrate Polymers 112 (2014) 225-234. https://doi.org/10.1016/j.carbpol.2014.05.087

C. Mit-uppatham, M. Nithitanakul, P. Supaphol. Effects of Solution Concentration, Emitting Electrode Polarity, Solvent Type, and Salt Addition on Electrospun Polyamide-6 Fibers: A Preliminary Report. Macromolecular Symposia 216(1) (2004) 293-300. https://doi.org/10.1002/masy.200451227



18-05-2023 — Updated on 18-05-2023

How to Cite

Subaşı-Zarbaliyev, B., Kutlu, G., & Törnük, F. (2023). Polyvinyl alcohol nanoparticles loaded with propolis extract: Fabrication, characterization and antimicrobial activity: Original scientific paper. ADMET and DMPK, 11(4), 587–600. https://doi.org/10.5599/admet.1740



Original Scientific Articles

Funding data