Curcumin-loaded nanoemulsion for acute lung injury treatment via nebulization: Formulation, optimization and in vivo studies

Original scientific article

Authors

  • Prashant Anilkumar Singh Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun-248 007, Uttarakhand, India https://orcid.org/0009-0006-0427-6866
  • Rajendra Awasthi Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun-248 007, Uttarakhand, India https://orcid.org/0000-0002-1286-1874
  • Ramendra Pati Pandey Department of Biotechnology, SRM University, Delhi-NCR, Sonepat-131029, Haryana, India https://orcid.org/0000-0002-5196-6468
  • Santosh K. Kar Polyfeenolix Research Laboratory (OPC) Private Limited, Patia, Bhubaneswar-751024, Odisha, India https://orcid.org/0009-0000-0684-2696

DOI:

https://doi.org/10.5599/admet.2661

Keywords:

Acute lung injury, acute respiratory distress syndrome, nanoemulsion, nebulization

Abstract

Introduction: Curcumin, a polyphenolic bioactive molecule, exhibits potent anti-inflammatory and antioxidant properties by reducing cytokine levels such as IL-6, TNF-α, and TGF-β. It regulates IL-17A and modulates key signaling pathways, including PI3K/AKT/mTOR, NF-κB and JAK/STAT. However, its clinical application is hindered by rapid metabolism, poor solubility, and chemical instability. Method: Using the Box-Behnken design, this study developed and optimized a curcumin-loaded turmeric oil-based nanoemulsion system. The effects of turmeric oil, Tween 80 and sonication cycles on particle size (PS), polydispersity index (PDI), and encapsulation efficiency were analyzed. The optimized nanoemulsion was characterized by zeta potential, PDI, PS, morphology, loading efficiency, EE, and antioxidant activity (DPPH assay). In vitro cytotoxicity was evaluated using A549 cells, while in vivo efficacy was assessed in BALB/c mice through histological analysis, bronchoalveolar lavage fluid analysis, and TNF-α and IL-1β estimation via enzyme-linked immunosorbent assay. Results: The optimized nanoemulsion had high entrapment efficiency (92.45±2.4 %), a PS of 130.6 nm, a PDI of 0.151, and a zeta potential of -1.7±0.6 mV. Nanoparticle tracking analysis confirmed a mean PS of 138.3±1.6 nm with a concentration of 3.78×10¹² particles/mL. Transmission electron microscopy imaging confirmed spherical morphology. The IC50 value was 25.65 µg/mL. The nanoemulsion remained stable for three months at 4±1 and 25±2 °C/ 60±5 % relative humidity. The optimized formulation significantly reduced BALF total cell count, alveolar wall thickening, and TNF-α and IL-1β levels (p < 0.001). Conclusion: Overall, the optimized formulation significantly lowered levels of pro-inflammatory cytokines in the acute lung injury /acute respiratory distress syndrome mouse model.

Downloads

Download data is not yet available.

References

Y. Ran, S. Yin, P. Xie, Y. Liu, Y. Wang, Z. Yin. ICAM-1 targeted and ROS-responsive nanoparticles for the treatment of acute lung injury. Nanoscale 16 (2024) 1983-1998. https://doi.org/10.1039/D3NR04401G.

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395 (2020) 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.

R. Herrero, G. Sanchez, J.A. Lorente. New insights into the mechanisms of pulmonary edema in acute lung injury. Annals of Translational Medicine 6 (2018) 2. https://doi.org/10.21037/atm.2017.12.18.

A.S. El-Din, A. Yehia, E. Hamza, T.M. A-Elgadir, E.E. Abd El-Fattah. Selenium nanoparticle ameliorates LPS-induced acute lung injury in rats through inhibition of ferroptosis, inflammation, and HSPs. Journal of Drug Delivery Science and Technology 95 (2024) 105626. https://doi.org/10.1016/j.jddst.2024.105626.

L. Tian, J. Jin, Q. Lu, H. Zhang, S. Tian, F. Lai, C. Liu, Y. Liang, Y. Lu, Y. Zhao, S. Yao. Bidirectional modulation of extracellular vesicle-autophagy axis in acute lung injury: Molecular mechanisms and therapeutic implications. Biomedicine & Pharmacotherapy 180 (2024) 117566. https://doi.org/10.1016/j.biopha.2024.117566.

L. Qu, C. Chen, Y. Chen, Y. Li, F. Tang, H. Huang, W. He, R. Zhang, L. Shen. High-mobility group box 1 (HMGB1) and autophagy in acute lung injury (ALI): A review. Medical Science Monitor 25 (2019) 1828. https://doi.org/10.12659/MSM.912867.

X. Cai, Y. Wu, F. Liu, J. He, Y. Bi. Syringin alleviates ROS-induced acute lung injury by activating SIRT1/STAT6 signaling pathway to inhibit ferroptosis. Tissue and Cell 93 (2024) 102698. https://doi.org/10.1016/j.tice.2024.102698.

S. Zhang, X. Zhao, Y. Xue, X. Wang, X.L. Chen. Advances in nanomaterial-targeted treatment of acute lung injury after burns. Journal of Nanobiotechnology 22 (2024) 342. https://doi.org/10.1186/s12951-024-02615-0.

F. Khadangi, A.S. Forgues, S. Tremblay-Pitre, A. Dufour-Mailhot, C. Henry, M. Boucher, M.J. Beaulieu, M. Morissette, L. Fereydoonzad, D. Brunet, A. Robichaud. Intranasal versus intratracheal exposure to lipopolysaccharides in a murine model of acute respiratory distress syndrome. Scientific Reports 11 (2021) 7777. https://doi.org/10.1038/s41598-021-87462-x.

S. Paris-Robidas, I. Bolduc, V. Lapointe, J. Galimi, P. Lemieux, C.A. Huppé, F. Couture. Impact of time intervals on drug efficacy and phenotypic outcomes in acute respiratory distress syndrome in mice. Scientific Reports 14 (2024) 20768. https://doi.org/10.1038/s41598-024-71659-x.

D. Lelli, A. Sahebkar, T.P. Johnston, C. Pedone. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacological Research 115 (2017) 133-148. https://doi.org/10.1016/j.phrs.2016.11.017.

B. Sun, M. Lei, J. Zhang, H. Kang, H. Liu, F. Zhou. Acute lung injury caused by sepsis: how does it happen? Frontiers in Medicine 10 (2023) 1289194. https://doi.org/10.3389/fmed.2023.1289194

Y. Zhou, J. Gong, X. Deng, L. Shen, S. Wu, H. Fan, L. Liu. Curcumin and nanodelivery systems: New directions for targeted therapy and diagnosis of breast cancer. Biomedicine & Pharmacotherapy 180 (2024) 117404. https://doi.org/10.1016/j.biopha.2024.117404.

M. Soltaninejad, R.S. Amleshi, M. Shabani, M. Ilaghi. Unraveling the protective effects of curcumin against drugs of abuse. Heliyon 10 (2024) e30468. https://doi.org/10.1016/j.heliyon.2024.e30468.

M. You, B. Liu, A. Jing, M. Zhang, Q. Qian, J. Ji, Y. Xu, Y. Tang. Curcumin as a promising treatment for pulmonary fibrosis: Mechanism and therapeutic potential. Pharmacological Research-Modern Chinese Medicine 10 (2024) 100404. https://doi.org/10.1016/j.prmcm.2024.100404.

M.M. Gouda, Y.P. Bhandary. Acute lung injury: IL-17A-mediated inflammatory pathway and its regulation by curcumin. Inflammation 42 (2019) 1160-1169. https://doi.org/10.1007/s10753-019-01010-4.

P.A. Singh, R.P. Pandey, R. Awasthi. Unveiling the role of nanoparticle-based therapeutic strategies for pulmonary drug delivery. Journal of Drug Delivery Science and Technology 104 (2025) 106558. https://doi.org/10.1016/j.jddst.2024.106558.

S. Singh, R. Awasthi. Breakthroughs and bottlenecks of psoriasis therapy: Emerging trends and advances in lipid-based nano-drug delivery platforms for dermal and transdermal drug delivery. Journal of Drug Delivery Science and Technology 84 (2023) 104548. https://doi.org/10.1016/j.jddst.2023.104548.

J. Duarte, A. Sharma, E. Sharifi, F. Damiri, M. Berrada, M.A. Khan, S.K. Singh, K. Dua, F. Veiga, F. Mascarenhas-Melo, P.C. Pires. Topical delivery of nanoemulsions for skin cancer treatment. Applied Materials Today 35 (2023) 102001. https://doi.org/10.1016/j.apmt.2023.102001.

R.J. Wilson, Y. Li, G. Yang, C.X. Zhao. Nanoemulsions for drug delivery. Particuology 64 (2022) 85-97. https://doi.org/10.1016/j.partic.2021.05.009.

Y. Liu, X. Chen, Z. Li, H. Yang, J. Wang. Optimization of vibrating mesh nebulizer air inlet structure for pulmonary drug delivery. Atmosphere 14 (2023) 1509. https://doi.org/10.3390/atmos14101509.

R.C. Gopalan, M. Najafzadeh, M.A. Mohammad, D. Anderson, A. Paradkar, K.H. Assi. Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles. International Journal of Pharmaceutics 557 (2019) 254-263. https://doi.org/10.1016/j.ijpharm.2018.12.042.

G. Vaz, A. Clementino, E. Mitsou, E. Ferrari, F. Buttini, C. Sissa, A. Xenakis, F. Sonvico, C.L. Dora. In vitro evaluation of curcumin-and quercetin-loaded nanoemulsions for intranasal administration: Effect of surface charge and viscosity. Pharmaceutics 14 (2022) 194. https://doi.org/10.3390/pharmaceutics14010194.

S.D. Acharya, P.K. Tamane, S.N. Khante, V.B. Pokharkar. QbD based optimization of curcumin nanoemulsion: DoE and cytotoxicity studies. Indian Journal of Pharmaceutical Education and Research 54 (2020) 329-336. https://doi.org/10.5530/ijper.54.2.38.

N. Ahmad, R. Ahmad, A. Al-Qudaihi, S.E. Alaseel, I.Z. Fita, M.S. Khalid, F.H. Pottoo. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Advances 9 (2019) 20192-20206. https://doi.org/10.1039/D0RA90079F.

S. Rohilla, R. Awasthi, A. Rohilla, S.K. Singh, D.K. Chellappan, K. Dua, H. Dureja. Optimizing gefitinib nanoliposomes by Box-Behnken design and coating with chitosan: A sequential approach for enhanced drug delivery. ADMET and DMPK 12 (2024) 657-677. https://doi.org/10.5599/admet.2366.

S. Singh, R. Awasthi. Berberine HCl and diacerein loaded dual delivery transferosomes: Formulation and optimization using Box-Behnken design. ADMET and DMPK 12 (2024) 553-580. https://doi.org/10.5599/admet.2268.

A. Abubakar, M.R. Olorunkemi, B. Musa, R.U. Hamzah, T. Abdulrasheed-Adeleke. Comparative in vitro antioxidant activities of aqueous extracts of Garcinia kola and Buchholzia coriacea seeds. Tanzania Journal of Science 46 (2020) 498-507. https://dx.doi.org/10.4314/tjs.v46i2.25.

E.M. Bruscia, P.X. Zhang, C. Barone, B.J. Scholte, R. Homer, D.S. Krause, M.E. Egan. Increased susceptibility of Cftr−/− mice to LPS-induced lung remodeling. American Journal of Physiology-Lung Cellular and Molecular Physiology 310 (2016) L711-L719. https://doi.org/10.1152/ajplung.00284.2015.

Y. Li, J. Huang, N.M. Foley, Y. Xu, Y.P. Li, J. Pan, H.P. Redmond, J.H. Wang, J. Wang. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration. Scientific Reports 6 (2016) 31284. https://doi.org/10.1038/srep31284.

Y. Du, P. Zhu, X. Wang, M. Mu, H. Li, Y. Gao, X. Qin, Y. Wang, Z. Zhang, G. Qu, G. Xu. Pirfenidone alleviates lipopolysaccharide-induced lung injury by accentuating BAP31 regulation of ER stress and mitochondrial injury. Journal of Autoimmunity 112 (2020) 102464. https://doi.org/10.1016/j.jaut.2020.102464.

M. Costa, J. Freiría-Gándara, S. Losada-Barreiro, F. Paiva-Martins, C. Bravo-Díaz. Effects of droplet size on the interfacial concentrations of antioxidants in fish and olive oil-in-water emulsions and nanoemulsions and on their oxidative stability. Journal of Colloid and Interface Science 562 (2020) 352-362. https://doi.org/10.1016/j.jcis.2019.12.011.

Y. Chang, D.J. McClements. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature. Journal of Agricultural and Food Chemistry 62 (2014) 2306-2312. https://doi.org/10.1021/jf500160y.

S. Kentish, T.J. Wooster, M. Ashokkumar, S. Balachandran, R. Mawson, L. Simons. The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & Emerging Technologies 9 (2008) 170-175. https://doi.org/10.1016/j.ifset.2007.07.005.

V. Ghosh, A. Mukherjee, N. Chandrasekaran. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonics Sonochemistry 20 (2013) 338-344. https://doi.org/10.1016/j.ultsonch.2012.08.010.

I. Golfomitsou, E. Mitsou, A. Xenakis, V. Papadimitriou. Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion-based food matrices: A structural and activity study. Journal of Molecular Liquids 268 (2018) 734-742. https://doi.org/10.1016/j.molliq.2018.07.109.

P. Pongsumpun, S. Iwamoto, U. Siripatrawan. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrasonics Sonochemistry 60 (2020) 104604. https://doi.org/10.1016/j.ultsonch.2019.05.021.

P. Aedtem, N. Poolcharoensil. Ultrasonic fabrication of catechin nanoemulsions from green tea with enhanced stability and antioxidant activity optimized by Box-Behnken design. Trends in Sciences 21 (2024) 8508. https://doi.org/10.48048/tis.2024.8508.

P.M. Chaudhari, M.A. Kuchekar. Development and evaluation of nanoemulsion as a carrier for topical delivery system by box-behnken design. Asian Journal of Pharmaceutical and Clinical Research 11 (2018) 286-293. https://doi.org/10.22159/ajpcr.2018.v11i8.26359.

C. Darquenne. Aerosol deposition in health and disease. Journal of Aerosol Medicine and Pulmonary Drug Delivery 25(3) (2012) 140-147. https://doi.org/10.1089/jamp.2011.0916.

J. Nesamony, A. Kalra, M.S. Majrad, S.H. Boddu, R. Jung, F.E. Williams, A.M. Schnapp, S.M. Nauli, A.L. Kalinoski. Development and characterization of nanostructured mists with potential for actively targeting poorly water-soluble compounds into the lungs. Pharmaceutical Research 30 (2013) 2625-2639. https://doi.org/10.1007/s11095-013-1088-2.

B. Elbardisy, N. Boraie, S. Galal. Tadalafil nanoemulsion mists for treatment of pediatric pulmonary hypertension via nebulization. Pharmaceutics 14(12) (2022) 2717. https://doi.org/10.3390/pharmaceutics14122717.

H.H. Hansen, G. Kijanka, L. Ouyang, N.T. Nguyen, H. An. Surfactant-free oil-in-water nanoemulsions with nanopore membrane and ultrasound. Journal of Molecular Liquids 399 (2024) 124323. https://doi.org/10.1016/j.molliq.2024.124323.

J. Nesamony, I.S. Shah, A. Kalra, R. Jung. Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: development, physico-chemical characterization and in vitro evaluation. Drug Development and Industrial Pharmacy 40(9) (2014) 1253-1263. https://doi.org/10.3109/03639045.2013.814065.

A. Hamad, S. Suriyarak, S. Devahastin, C. Borompichaichartkul. A novel approach to develop spray‐dried encapsulated curcumin powder from oil‐in‐water emulsions stabilized by combined surfactants and chitosan. Journal of Food Science 85(11) (2020) 3874-3884. https://doi.org/10.1111/1750-3841.15488.

A. Gomes, A.L. Costa, D.D. Cardoso, G. Náthia-Neves, M.A. Meireles, R.L. Cunha. Interactions of β-carotene with WPI/Tween 80 mixture and oil phase: Effect on the behavior of O/W emulsions during in vitro digestion. Food Chemistry 341 (2021) 128155. https://doi.org/10.1016/j.foodchem.2020.128155.

J. Pleńkowska, M. Gabig-Cimińska, P. Mozolewski. Oxidative stress as an important contributor to the pathogenesis of psoriasis. International Journal of Molecular Sciences 21(17) (2020) 6206. https://www.mdpi.com/1422-0067/21/17/6206.

M. Kellner, S. Noonepalle, Q. Lu, A. Srivastava, E. Zemskov, S.M. Black. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Pulmonary Vasculature Redox Signaling in Health and Disease, Springer, Switzerland, 2017, p. 105-137. https://doi.org/10.1007/978-3-319-63245-2_8.

J.B. Đoković, S.M. Savić, J.R. Mitrović, I. Nikolic, B.D. Marković, D.V. Randjelović, J. Antic-Stankovic, D. Božić, N.D. Cekić, V. Stevanović, B. Batinić. Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: a pilot study on rats. International Journal of Molecular Sciences 22(15) (2021) 7991. https://doi.org/10.3390/ijms22157991.

S. Safari, P. Davoodi, A. Soltani, M. Fadavipour, A. Rezaeian, F. Heydari, M.A. Khazeei Tabari, M. Akhlaghdoust. Curcumin effects on chronic obstructive pulmonary disease: A systematic review. Health Science Reports 6(3) (2023) e1145. https://doi.org/10.1002/hsr2.1145.

H. Khan, H. Ullah, S.M. Nabavi. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food and Chemical Toxicology 124 (2019) 182-191. https://doi.org/10.1016/j.fct.2018.12.002.

M.H. Farzaei, M. Zobeiri, F. Parvizi, F.F. El-Senduny, I. Marmouzi, E. Coy-Barrera, R. Naseri, S.M. Nabavi, R. Rahimi, M. Abdollahi. Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients 10(7) (2018) 855. https://doi.org/10.3390/nu10070855.

S.T. Rasool, R.R. Alavala, U. Kulandaivelu, N. Sreeharsha. Non-invasive delivery of nano-emulsified sesame oil-extract of turmeric attenuates lung inflammation. Pharmaceutics 12(12) (2020) 1206. https://doi.org/10.3390/pharmaceutics12121206.

J. Tejero, S. Shiva, M.T. Gladwin. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiological Reviews 99(1) (2019) 311-379. https://doi.org/10.1152/physrev.00036.2017.

N.C. Adusumilli, D. Zhang, J.M. Friedman, A.J. Friedman. Harnessing nitric oxide for preventing, limiting and treating the severe pulmonary consequences of COVID-19. Nitric Oxide 103 (2020) 4-8. https://doi.org/10.1016/j.niox.2020.07.003.

J. Grommes, O. Soehnlein. Contribution of neutrophils to acute lung injury. Molecular Medicine 17 (2011) 293-307. https://doi.org/10.2119/molmed.2010.00138.

A. McCarron, R. Surolia, L. Ruffini. Model organisms in respiratory pharmacology 2023. Frontiers in Pharmacology 15 (2025) 1540222. https://doi.org/10.3389/fphar.2024.1540222.

J. Wang, H. Zhang, C. Su, J. Chen, B. Zhu, H. Zhang, H. Xiao, J. Zhang. Dexamethasone ameliorates H2S-induced acute lung injury by alleviating matrix metalloproteinase-2 and-9 expression. PLoS One 9(4) (2014) e94701. https://doi.org/10.1371/journal.pone.0094701.

G. Matute-Bello, C.W. Frevert, T.R. Martin. Animal models of acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology 295(3) (2008) L379- L399. https://doi.org/10.1152/ajplung.00010.2008.

Y.Z. Wu, Q. Zhang, X.H. Wei, C.X. Jiang, X.K. Li, H.C. Shang, S. Lin. Multiple anti-inflammatory mechanisms of Zedoary Turmeric Oil Injection against lipopolysaccharides-induced acute lung injury in rats elucidated by network pharmacology combined with transcriptomics. Phytomedicine 106 (2022) 154418. https://doi.org/10.1016/j.phymed.2022.154418.

K.R. Kahkhaie, A. Mirhosseini, A. Aliabadi, A. Mohammadi, M.J. Mousavi, S.M. Haftcheshmeh, T. Sathyapalan, A. Sahebkar. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology 27 (2019) 885-900. https://doi.org/10.1007/s10787-019-00607-3.

S. Toden, A.L. Theiss, X. Wang, A. Goel. Essential turmeric oils enhance anti-inflammatory efficacy of curcumin in dextran sulfate sodium-induced colitis. Scientific Reports 7(1) (2017) 814. https://doi.org/10.1038/s41598-017-00812-6.

Downloads

Published

20-03-2025

Issue

Section

Pharmaceutics

How to Cite

Curcumin-loaded nanoemulsion for acute lung injury treatment via nebulization: Formulation, optimization and in vivo studies: Original scientific article. (2025). ADMET and DMPK, 13(2), 2661. https://doi.org/10.5599/admet.2661

Similar Articles

1-10 of 86

You may also start an advanced similarity search for this article.