Anti-biofilm, drug delivery and cytotoxicity properties of dendrimers
DOI:
https://doi.org/10.5599/admet.1917Keywords:
Dendrimers, biofilm, nanotechnology, anti-biofilm activity, drug delivery, quorum sensingAbstract
Background and purpose: Treatments using antimicrobial agents have faced many difficulties as a result of biofilm formation by pathogenic microorganisms. The biofilm matrix formed by these microorganisms prevents antimicrobial agents from penetrating the interior where they can exact their activity effectively. Additionally, extracellular polymeric molecules associated with biofilm surfaces can absorb antimicrobial compounds, lowering their bioavailability. This problem has resulted in the quest for alternative treatment protocols, and the development of nanomaterials and devices through nanotechnology has recently been on the rise. Research approach: The literature on dendrimers was searched for in databases such as Google Scholar, PubMed, and ScienceDirect. Key results: As a nanomaterial, dendrimers have found useful applications as a drug delivery vehicle for antimicrobial agents against biofilm-mediated infections to circumvent these defense mechanisms. The distinctive properties of dendrimers, such as multi-valency, biocompatibility, high water solubility, non-immunogenicity, and biofilm matrix-/cell membrane fusogenicity (ability to merge with intracellular membrane or other proteins), significantly increase the efficacy of antimicrobial agents and reduce the likelihood of recurring infections. Conclusion: This review outlines the current state of dendrimer carriers for biofilm treatments, provides examples of their real-world uses, and examines potential drawbacks.
Downloads
References
X. Fan, F. Yang, C.N. L. Ma, C. Cheng, R. Haag. Biocatalytic nanomaterials: A new pathway for bacterial disinfection. Advance Materials 33 (2021) 2100637. https://doi.org/10.1002/adma.202100637
Antibiotic Resistance Threats in the United States, (Department of Health and Human Services, CDC, 2019). https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
L. Serwecinska. Antimicrobials and antibiotic-resistant bacteria: A risk to the environmental andto public health. Water 12 (2020) 3313.https://doi.org/10.3390/w12123313
A. Kannappan, S. Gowrishankar, R. Srinivasan, S.K. Pandian, A.V. Ravi. Antibiofilm activity of Vetiveriazizanioides root extract against methicillin-resistant Staphylococcus aureus. Microbial Pathogenesis 110 (2019) 313-324. https://doi.org/10.1016/j.micpath.2017.07.016
A.R. Padmavathi, D. Bakkiyaraj, S.K. Pandian. Biofilm inhibition by natural products of marine origin and their environmental applications, in Biofilms in Plant and Soil Health, I. Ahmad F. M. Husain, Eds., Wiley, Hoboken,, Belgium, 2017, p. 465. https://doi.org/10.1002/9781119246329.ch23
D. Banerjee, P.M. Shivapriya, P.K. Gautam, K. Misra, A.K. Sahoo, S.K. Samanta. A review on basic biology of bacterial biofilm infections and their treatments by nanotechnology-based approaches. Proceedings of the National Academy of Sciences B 90 (2019) 243-259.https://doi.org/10.1007/s40011-018-01065-7
C.M. Schrekker, Y.C. Sokolovicz, M.G. Raucci, B.S. Selukar, J.S. Klitzke, W. Lopes, C.A.M. Leal, I.O.P. de Souza, G.B. Galland, J.H.Z. Dos Santos, R.S. Mauler, M. Kol, S. Dagorne, L. A, M.L. Teixeria, J. Morais, R. Landers, A.M. Fuentefria, S. Schrekker. Multitask imidazolium salt additives for innovative poly (l-lactide) biomaterials: morphology control, Candida spp. biofilm inhibition, human mesenchymal stem cell biocompatibility, and skin tolerance. ACS Applied Material Interfaces 8 (2016) 21163-21176. https://doi.org/10.1021/acsami.6b06005
Y. Zhao, X. Dai, X. Wei, Y. Yu, X. Chen, X. Zhang, C. Li. Near-infrared light-activated thermosensitive liposomes as efficient agents for photothermal and antibiotic synergistic therapy of bacterial biofilm. ACS Applied Material Interfaces 10 (2018) 14426-14437. https://doi.org/10.1021/acsami.8b01327
N. Soleimani, A. Mobarez, M. Olia, F. Atyabi. Synthesis, characterization and effect of the antibacterial activity of chitosan nanoparticles on vancomycin-resistant Enterococcus and other gram negative or gram positive bacteria. International Journal of Pure and Applied Sciences and Technology 26(1) (2015) 14-23. https://www.researchgate.net/publication/337472318_Synthesis_Characterization_and_Effect_of_the_Antibacterial_Activity_of_Chitosan_Nanoparticles_on_Vancomycin-_Resistant_Enterococcus_and_Other_Gram_Negative_or_Gram_Positive_Bacteria
S. Mishra, A. Gupta, V. Upadhye, S.C. Singh, R.P. Sinha, D.P. Häder. Therapeutic Strategies against biofilm infections. Life 13 (2023) 172. https://doi.org/10.3390/life13010172
A.D. Verderosa, M. Totsika, K.E. Fairfull-Smith. Bacterial Biofilm Eradication Agents. Frontiers in Chemistry 7 (2019) 824. https://doi.org/10.3389/fchem.2019.00824
S. Alfei, A.M. Schito. From Nanobiotechnology, Positively Charged Biomimetic Dendrimers as Novel Antibacterial Agents.Nanomaterials 10(2020) 2022.https://doi.org/10.3390/nano10102022
S. Alfei, D. Caviglia. Prevention and eradication of biofilm by dendrimers: A possibility still little explored. Pharmaceutics 14 (2022) 2016.https://doi.org/10.3390/pharmaceutics14102016
L. Palmerston Mendes, J. Pan, V.P. Torchilin. As nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9) (2017) 1401. https://doi.org/10.3390/molecules22091401
A.J.P. Teunissen, M.E. Burnett, G. Prévot, E.D. Klein, D. Bivona, W.J.M. Mulder. Embracing nanomaterials’ interactions with the innate immune system. WIREs Nanomedicine and Nanobiotechnology 13(6)(2021) e1719. https://doi.org/10.1002/wnan.1719
J.H. Myung, K.A.Gajjar, J. Saric, D.T. Eddington, S. Hong. Dendrimer-mediated multivalent binding for the enhanced capture of tumor cells. AngewandteChemie International Edition 50(49) (2011) 11769-11772. https://doi.org/10.1002/anie.201105508
Y. Wang, S.M. Lee. G. Dykes. the physicochemical process of bacterial attachment to abiotic surfaces: challenges for mechanistic studies, predictability and the development of control strategies. Critical Review in Microbiology 41 (2015) 452-464. https://doi.org/10.3109/1040841X.2013.866072
W. Yin, Y. Wang, L. Liu, J. He. Biofilms: the microbial “protective clothing” in extreme environments.International Journal of Molecular Sciences 20(14) (2019) 3423. https://doi.org/10.3390/ijms20143423
M. Kostakioti, M. Hadjifrangiskou, S.J. Hultgren. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era.Cold Spring Harbor Perspectives and Medicine 3 (2023) a010306. https://doi.org/10.1101/cshperspect.a010306
B.E. Cohen. Functional linkage between genes that regulate osmotic stress responses and multidrug resistance transporters: challenges and opportunities for antibiotic discovery. Antimicrobial Agents and Chemotherapy 58(2) (2014) 640-646. https://doi.org/10.1128/aac.02095-13
T. Rasamiravaka, Q. Labtani, P. Duez, M. El Jaziri. The formation of biofilms by Pseudomonas aeruginosa : a review of the natural and synthetic compounds interfering with control mechanisms. Biomedical Research International 2015 (2015) 759348 .https://doi.org/10.1155/2015/759348
M. Asally, M. Kittisopikul, P. Rue, Y. Du, Z. Hu, T. Cagatay, A.B. Robinson, H. Lu, J. Garcia-Ojalvo, G.M. Suel. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proceedings of the National Academy of Sciences 109(46) (2012) 18891-18896. https://doi.org/10.1073/pnas.1212429109
B.N. Singh, U.D.K. Prateeksha, B.R. Singh, T. Defoirdt, V.K. Gupta, K. Vahabi. Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Critical Review in Biotechnology37 (2016) 525-540. https://doi.org/10.1080/07388551.2016.1199010
N.Islam, Y. Kim, J.M. Ross, M.R. Marten. Proteome analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear conditions. Proteome Sciences 12 (2014) 21. https://doi.org/10.1186/1477-5956-12-21
S. Qayyum, D. Sharma, D. Bisht, A.U. Khan. Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: a proteomic approach. Biochemical and Biophysic Research Community 474 (2016) 652-659. https://doi.org/10.1016/j.bbrc.2016.04.145
P. Tielen, N. Rosin, A.K. Meyer, K. Dohnt, I. Haddad, L. Ja¨nsch , J. Klein, M. Narten, C. Pommerenke, M. Scheer, M. Schobert, D. Schomburg, B. Thielen, D. Jahn. Regulatory and metabolic networks for the adaptation of Pseudomonasaeruginosa biofilms to urinary tract-like conditions. PLoS ONE 8(8) (2013) e71845. https://doi.org/10.1371/journal.pone.0071845
M. Otto. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual Review in Medicine 64 (2013) 175-188. https://doi.org/10.1146/annurev-med-042711-140023
Y. Wang. Liposome as a delivery system for the treatment of biofilm-mediated infections. Journal of Applied Microbiology 131 (2021) 2626-2639. https://doi.org/10.1111/jam.15053
T.K. Lu, J.J. Collins. Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences 104 (2007) 11197-202. https://doi.org/10.1073/pnas.0704624104
R. Nazir, M.R. Zaffar, I. Amin. Bacterial biofilms: the remarkable heterogeneous biological communities and nitrogen fixing microorganisms in lakes.Freshwater Microbiology 1 (2019) 307-340. https://doi.org/10.1016/B978-0-12-817495-1.00008-6
T.K. Wood, S.J. Knabel, B.W. Kwan. Bacterial persister cell formation and dormancy. Applied Environmental Microbiology 79(23) (2013) 7116-7121. https://doi.org/10.1128 %2FAEM.02636-13
S. Ramanathan, K. Arunachalam, S. Chandran, R. Selvaraj, K. Shunmugiah, V. Arumugam. Biofilm inhibitory efficiency of phytol in combination with cefotaxime against nosocomial pathogenAcinetobacter baumannii.Journal of Applied Microbiology 125 (2018) 56-71. https://doi.org/ doi: 10.1111/jam.13741
G. Batoni, G. Maisetta, S. Esin. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria.Biochimical and Biophysic Acta (BBA) Biomembranes 1858 (2016) 1044-1060. https://doi.org/10.1016/i.bbamem.2015.10.013
R. Waldrop, A. McLaren, F. Calara, R. McLemore. Biofilm growth has a threshold response to glucose in vitro. Clinical and Orthopedic Related Research 475(11) (2014) 3305-3310. https://doi.org/10.1007/s11999-014-3538-5
B. Purevdorj, J.W. Costerton, P. Stoodley. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Applied Environmental Microbiology 68(9) (2002) 268-307. https://doi.org/10.1128/aem.68.9.4457-4464.2002
J.M. Munita, C.A. Arias. Mechanisms of antibiotic resistance. Microbiology and Spectroscopy 4 (2016) VMBF-0016-2015. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
T.T. Gupta, S.B. Karki, R. Fournier, H. Ayan. Mathematical modelling of the effects of plasma treatment on the diffusivity of biofilm. Applied Sciences 8(10) (2018) 1729. https://doi.org/10.3390/app8101729
M.A. Rather, K. Gupta, M. Mandal. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology 52 (2021) 1701-1718. https://doi.org/10.1007/s42770-021-00624-x
C. Potera. Antibiotic resistance: biofilm dispersing agent rejuvenates older antibiotics. EnvironmentalHealth Perspective 118 (2010) 288-291. https://doi.org/10.1289/ehp.118-a288
A.W. Smith. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Advances in Drug Delivery Review 57 (2005) 1539-1550. https://doi.org/10.1016/j.addr.2005.04.007
N. Hoiby, O. Ciofu, H.K. Johansen, Z.J. Song. The clinical impact of bacterial biofilms. International Journal of Oral Sciences 3 (2011) 55-65.https://doi.org/10.4248/ijos11026
H. Wolfmeier, D. Pletzer, S.C. Mansour, R.E. Hancock. New perspectives in biofilm eradication. ACS Infectious Diseases 4 (2018) 93-106. https://doi.org/10.1021/acsinfecdis.7b00170
Y. Liu, H.J. Busscher , B. Zhao, Z. Zhang , H.C. van der mei, Y. Ren, H.J. Busscher. Perspectives on and need to develop new infection control methods. In Racing for the Surface: Pathogenesis of Implant Infection and Advanced Antimicrobial Strategies,. B. Li, T.F.Moriarty, T. Webster, M. Xing, Eds., Springer Nature, Cham, Switzerland, 2019 p. 95. https://doi.org/10.1007/978-3-030-34475-7_5
N. Neville, Z. Jia. Approaches to the structure based design of antivirulence drugs: therapeutics for the post-antibiotic era. Molecules 24 (2019) 378. https://doi.org/10.3390/molecules24030378
M.D.A.S. Ramos, P.B. Da Silva, L. Sposito , L.G. De Toledo, B.V. Bonifacio, C.F. Rodero, C. Fernanda, D. Karen, C. Marlus, B, Tais Maria. Nanotechnology-based drug delivery systems for control of microbial biofilms. International Journal of Nanomedicine 13 (2018) 1179. https://doi.org/10.2147/ijn.s146195
N.L. Podnecky, K.A. Rhodes, H.P. Schweizer. Efflux pump-mediated drug resistance in Burkholderia. Frontiers in Microbiology 6 (2015) 305. https://doi.org/10.3389/fmicb.2015.00305
D.B. Schlisselberg, E. Kler, G. Kisluk, D. Shachar, S. Yaron. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants. International Journal of Antimicrobial Agents 46 (2015) 456-459. https://doi.org/10.1016/j.ijantimicag.2015.06.011
H. Van Acker, P. Van Dijck, T. Coenye. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends in Microbiology 22 (2014) 326-33. https://doi.org/10.1016/j.tim.2014.02.001
K. Qvortrup, L.D. Hultqvist, M. Nilsson, T.H. Jakobsen, C.U. Jansen. J. Uhd,, J. Andersen, J. Bo, N.E. Thomas, G. Micheal, T. Tim. Small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation. Frontiers Chemistry 7 (2019)742. https://doi.org/10.3389/fchem.2019.00742
Y. Meng, X. Hou, J. Lei, M. Chen, S. Cong, Y. Zhang, W. Ding, G. Li, X. Li. Multi-functional liposomes enhancing target and antibacterial immunity for antimicrobial and anti-biofilm against methicillin-resistant Staphylococcus aureus. Pharmaceutical Research 33 (2016) 763-775. https://doi.org/10.1007/s11095-015-1825-9
S. Singh, S.K. Singh, I. Chowdgury, R. Singh. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiology Journal 11(2017) 53. https://doi.org/10.2174/1874285801711010053
P.S. Stewart, M.J. Franklin. Physiological heterogeneity in biofilms. Nature Review in Microbiology 6 (2008) 199-210. https://doi.org/10.1038/nrmicro1838
K. Forier, K. Raemdonck, S.C. De Smedt, J. Demeester, T. Coenye, K. Braeckman. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. Journal of Control Release 190 (2014) 607-623. https://doi.org/10.1016/j.jconrel.2014.03.055
Y.N. Albayaty, N. Thomas, S. Hasan, C.A. Prestidge. Penetration of topically used antimicrobials through Staphylococcus aureus biofilms: a comparative study using different models. Journal of Drug Delivery Science and Technology 48 (2018) 429-436. https://doi.org/10.1016/j.jddst.2018.10.015
X. Kong, Y. Liu, X. Huang, S. Huang, F. Gao, P. Rong, S. Zhang, K. Zhang, W. Zeng. Cancer therapy based on smart drug delivery with advanced nanoparticles. Anticancer Agents Medicine and Chemistry 19 (2019) 720-730. https://doi.org/10.2174/1871520619666190212124944
X. Liu, J. Xiang, D. Zhu, L. Jiang, Z. Zhou, J. Tang, X. Liu, Y. Huang, Y. Shen. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Advances in Material 28 (2016) 1743-1752. https://doi.org/10.1002/adma.201504288
N.A. Lopes, A. Brandelli. Nanostructures for delivery of natural antimicrobials in food. Critical Review in Food Sciences and Nutrition 58 (2018) 2201-2212. https://doi.org/10.1080/10408398.2017.1308915
P. Kumar, R.A. Shenoi, B.F. Lia, M. Nguyen, J.N. Kizhakkedathu, S.K. Straus. Conjugation of aurein 2.2 to HPG yields an antimicrobial with better properties. Biomacromolecule 16 (2015) 913-923. https://doi.org/10.1021/bm5018244
Y. Zheng , W. Tai. Insight into the siRNA transmembrane delivery—from cholesterol conjugating to tagging. Wiley Interdiscipline Review in Nanomedicine and Nanobiotechnology 12 (2020) e1606. https://doi.org/10.1002/wnan.1606
S. Bibi, E. Lattmann, A.R. Mohammed, Y. Perrie. Trigger release liposome systems: local and remote controlled delivery? Journal of Microencapsule 29 (2012) 262-276. https://doi.org/10.3109/02652048.2011.646330
P. Mittal, A. Saharan, R. Verma, F. Altalbawy, M. Alfaidi, G. Batiha, W. Akter, R.K. Gautam, S. Uddin, S. Rahman. Dendrimers: A New Race of Pharmaceutical Nanocarriers. BioMed Research International 2021 (2021) 8844030. https://doi.org/10.1155/2021/8844030
P. Kesharwani, S. Banerjee, U. Gupta, M.C.I.M. Amin, S. Padhye, F.H. Sarkar, et al. H. Fazlul, I.K. Arun. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Materials Today 18 (2015) 565-572. https://doi.org/10.1016/j.mattod.2015.06.003
H. Namazi, Y.T. Hamrahloo. Novel pH sensitive nanocarrier agents based on citric acid dendrimers containing conjugated b-cyclodextrins. Advances in Pharmaceutical Bulletin 1(1) (2011) 40-47. https://doi.org/10.5681/apb.2011.006
B. Surekha, N.S. Kommana, S.K. Dubey, A.V.P. Kumar,P. Shukla, P. Kesharwani. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surface B 204 (2021) 111837. https://doi.org/10.1016/j.colsurfb.2021.111837
H. Choudhury, S.P. Sisinthy, B. Gorain, P.Kesharwani. History and introduction of dendrimers, dendrimer-based nanotherapeutics, P. Kesharwani, Ed., Elsevier, Kuala Lumpur, Malaysia, 2021. p. 1-14. https://doi.org/10.1016/b978-0-12-821250-9.00014-7
V. Gawande, V. Choudhury, P. Kesharwani. Dendrimer nomenclature and synthesis methods, dendrimer-Based Nanotherapeutics, P. Kesharwani, Ed., Elsevier, Pune, India, 2021, p. 75-94. https://doi.org/10.1016/b978-0-12-821250-9.00009-3
K. Jian, N. Jain, P. Kesharwani, P. Kesharwani. Types of dendrimers, dendrimer-based nanotherapeutics, P. Kesharwani, Ed., Elsevier, Raebareli, India, 2021, p. 95-123. https://doi.org/10.1016/b978-0-12-821250-9.00007-x
D. Luong, P. Kesharwani, R. Deshmukh, M. Amin, U. Gupta, K. Greish, I.K. Arun. PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomaterial 43 (2016) 14-29. https://doi.org/10.1016/j.actbio.2016.07.015
B. Singh, S. Saini, S. Lohan, S. Beg, Systematic development of nanocarriers employing quality by design paradigms, inNanotechnology-based approaches for targeting and delivery of drugs and genes, P.Kesharwani, V. Mishra, M.C.I. Mohd Amin, A. Iyer, Eds.,Academic Press, 2017. p. 110-148. https://doi.org/10.1016/b978-0-12-809717-5.00003-8
S. Singh, G. Singh, S. Sehrawat, P. Rawat, N. Molugulu, V. Singh, F.J. Ahmed, P. Kesharwani. Future considerations of dendrimers, Dendrimer-based nanotherapeutics,P. Kesharwani, Ed., Elsevier, Punjab, India, 2021, p. 449-458. https://doi.org/10.1016/b978-0-12-821250-9.00005-6
N.J. Bashiz, A. Asefnejad, A.R. Saadatabad. A polycaprolactone/cellulose acetate/polycaprolactone scaffolds: Study the absorption, kinetics and controlled release of anticancer drugs. Iranian Journal of Chemistry and Chemical Engineering (2023). https://doi.org/10.30492/ijcce.2023.2009095.6173
A.P. Sherje, M. Jadhav, B.R. Dravyakar, K. Darshana. Dendrimers: a versatile nanocarrier for drug delivery and targeting. International Journal of Pharmacy 548 (2018) 707-720. https://doi.org/10.1016/j.ijpharm.2018.07.030
M. Pooresmaeil, H. Namazi. Advances in development of the dendrimers having natural saccharides in their structure for efficient and controlled drug delivery applications. European Polymer Journal 148 (2021) 110356. https://doi.org/10.1016/j.eurpolymj.2021.110356
B. Gorain, M. Pandey, H. Choudhury, G.K. Jain, P. Kesharwani. Dendrimer for solubility enhancement, dendrimer-based nanotherapeutics, P.Kesharwani, Ed., D Elsevier, Selangor, Malaysia, 2021, p. 273-83. https://doi.org/10.1016/b978-0-12-821250-9.00025-1
V. Patel, C. Rajani, D. Paul, P. Borisa, K. Rajpoot, R.S. Youngren-Ortiz, R.K. Tekade. Dendrimers as novel drug-delivery system and its applications, Drug delivery systems, R. K.Takade, Ed., .Elsevier, Ahmedabad, India, 2019, p. 333-392. https://doi.org/10.1016/b978-0-12-814487-9.00008-9
R. Hosseyni, M. Pooresmaeil, H. Namazi H. Star-shaped polylactic acid-based triazine dendrimers: the catalyst type and time factors influence on polylactic acid molecular weight. Polymer 29(5) (2020) 423-432. https://doi.org/10.1007/s13726-020-00807-7
N. Soni, U. Jain, U. Gupta, N. Jain. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly (propyleneimine) dendrimers. Journal of Nanoparticles Research 17(11) (2015) 458. https://doi.org/10.1007/s11051-015-3265-1
R. Karthikeyan, O.S. Koushik, P.V. Kumar. Dendrimeric architecture for effective antimicrobial therapy, dendrimers for drug delivery, dendrimers for controlled release drug delivery, Apple Academic Press, Palm Bay, USA, 2019,p. 375-405. https://www.researchgate.net/publication/331033521
S. Authimoolam, T. Dziubla. Biopolymeric mucin and synthetic polymer analogs: Their structure, function and role in biomedical applications. Polymers 8 (2016) 71. https://doi.org/10.3390/polym8030071
Y. Cheng, H. Qu, M. Ma, Z. Xu, P. Xu, Y. Fang, T. Xu.Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: An in vitro study. European Journal of Medical Chemistry 42 (2007) 1032-1038. https://doi.org/10.1016/j.ejmech.2006.12.035
K. Kuwahara, T. Kitazawa, H. Kitagaki, T. Tsukamoto, M. Kikuchi. Nadifloxacin, an antiacne quinolone antimicrobial, inhibits the production of proinflammatory cytokines by human peripheral blood mononuclear cells and normal human keratinocytes. Journal of Dermatological Sciences 38 (2005) 47-55. https://doi.org/10.1016/j.jdermsci.2005.01.002
S.W. Svenningsen, R.F. Frederiksen, C. Counil, M. Ficker, J.J. Leisner, J.B. Christensen. Synthesis and Antimicrobial Properties of a Ciprofloxacin and PAMAM-dendrimer Conjugate. Molecules 25 (2020) 1389. https://doi.org/10.3390/molecules25061389
J. Bugno, H.J. Hsu, S. Hong. Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: Potential nanocarriers for improved cancer targeting. Journal of Drug Targeting 23(7-8) (2015) 642-650. https://doi.org/10.3109/1061186X.2015.1052077
B.K. Nanjwade, H.M. Bechra, G.K. Derkar, F. Manvi, V.K. Nanjwade. Dendrimers: emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences 38(3) (2009) 185-196. https://doi.org/10.1016/j.ejps.2009.07.008
K. Jain.. 7 - Dendrimers: Smart nanoengineered polymers for bioinspired applications in drug delivery, Biopolymer-based composites, S. Jana, S. Maiti, S. Jana Eds., Woodhead Publishing, Raebareli, India,2017 p. 169-220. https://doi.org/10.1016/B978-0-08-101914-6.00007-7
R.K. Kesrevani, A.K. Sharma. Nanoarchitectured biomaterials: present status and future prospects in drug delivery, in Nanoarchitectonics for smart delivery and drug targeting, A.M. Grumezescu Ed., Elsevier Inc, Amsterdam, Netherlands, 2016 p. 35-66. ISBN: 9780323477222
A. Santos, F. Veiga, A. Figueiras. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials 13(1) (2019) 65. https://doi.org/10.3390/ma13010065
Z. Lyu, L. Ding, A.Y. Huang, C. Kao, L. Peng. Poly (amidoamine) dendrimers: covalent and supramolecular synthesis. Materials Today Chemistry 13 (2019) 34-48. https://doi.org/10.1016/j.mtchem.2019.04.004
D.A. Tomalia, H, Baker, J. Dewald, M. Hall, G. Kallos, S Martin, J. Ryder, P. Smith. A New class of polymers: starburst-dendritic macromolecules. Polymer Journal 17 (1985) 117-132. https://doi.org/10.1295/polymj.17.117
E. Abbasi, S.F. Aval, A. Akbarzadeh, M. Milani, H. Nasrabadi, S.W. Joo. Dendrimers: Synthesis, applications, and properties. Nanoscale Research Letters 9(1) (2014)247. https://doi.org/10.1186/1556-276X-9-247
A.M. Caminade, C.O. Turrin, R. Laurent, A. Maraval, J.P. Majoral. Synthetic pathways towards phosphorus dendrimers and dendritic architectures. Current Organic Chemistry 10 (2006) 2333-2355. https://doi.org/10.2174/138527206778992680
C.J. Hawker, J.M.J Fréchet. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society 112 (1990) 7638-7646. https://doi.org/10.1021/ja00177a027
S. Tripathy, L. Baro, M.K. Das. Dendrimer chemistry and host-guest interactions for drug targeting. International Journal of Pharmaceutical Science and Research 5(1) ( 2014) 16-25. http://dx.doi.org/10.13040/IJPSR.0975-8232.5(1).16-25
E.R. Gillies, J.M.J. Fréchet. Designing macromolecules for therapeutic applications: polyester dendrimer poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Journal of the American Chemical Society 124(47) (2002) 14137-14146. https://doi.org/10.1021/ja028100n
J.W. Lee, H.H. Kim, H.J. Kim, S.C. Han, J.H. Kim, W.S. Shin, S. Jin. Synthesis of symmetrical and unsymmetrical PAMAM dendrimers by fusion between azide- and alkyne-functionalized PAMAM dendrons. Bioconjugate Chemistry 18(2) (2007) 579-584. https://doi.org/10.1021/bc060256f
E.N. Augustus, E.T. Allen, A. Nimibofa, W. Donbebe. A review of synthesis, characterization and applications of functionalized dendrimers. American Journal of Polymer Science 7(1) (2017) 8-14. https://doi.org/10.5923/j.ajps.20170701.02
B. Donnio, S. Buathong, I. Bury, D. Guillon. Liquid crystalline dendrimers. Chemical Society Reviews 36(9) (2007) 495-513. https://doi.org/10.1039/b605531c
S. Gurunathan, M.H. Kang, M. Qasim, J.H. Kim. Nanoparticle-mediated combination therapy: two-in-one approach for cancer. International Journal of Molecular Sciences 19(10) (2018) 3264. https://doi.org/10.3390/ijms19103264
A. Jain, S. Dubey, A. Kaushik, K. Tyagi. Dendrimer: a complete drug carrier. International Journal of Pharmaceutical Science Research 1(4) (2010) 38-52. http://dx.doi.org/10.13040/IJPSR.0975-8232
V.G. Joshi, V.D. Dighe, D. Thakuria, Y.S. Malik, S. Kumar. Multiple antigenic peptide (MAP): a synthetic peptide dendrimer for diagnostic, antiviral and vaccine strategies for emerging and re-emerging viral diseases. Indian Journal of Virology 24(3) (2013) 312-320. https://doi.org/10.1007/s13337-013-0162-z
M. Kalomiraki, K. Thermos, N.A. Chaniotakis. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. International Journal of Nanomedicine 11 (2015) 1-12. https://doi.org/10.2147/ijn.s93069
D.B. Longley, D.P. Harkin, P.G. Johnston. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nature Reviews Cancer 3(5) (2003) 330-338. https://doi.org/10.1038/nrc1074
K.Ramalingam, N.C. Frohlich, A.C. Lee. Effect of nanoemulsion on dental unit waterline biofilm. Journal Dental 28 (2013) 333-336. https://doi.org/10.1016/j.jds.2013.02.035
J. Janiszewska, J. Swieton, A.W. Lipkowski, Z. Urbanczyk-Lipkowska . Low molecular mass peptide dendrimers that express antimicrobial properties. Bioorganism Medicine and Chemistry Letters 13 (2003) 3711-3713. https://doi.org/10.1016/j.bmcl.2003.08.009
E.M.W. Johansson, S.A. Crusz, E. Kolomiets, L. Buts, R.U. Kadam, M. Cacciarini, K. Bartels, S.P. Diggle, M. Camara, P. Williams, R. Loris, C. Nativi, F. Rosenau, K. Jaeger, T. Darbre, J. Reymond. Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose specific lectin LecB. Chemistry and Biology 15 (2008) 1249-1257. https://doi.org/10.1016/j.chembiol.2008.10.009
D. Dhumal, B. Maron, M. Malach, L. Ding, D. Marson, E. Laurini, A. Tintaru, B. Ralahy, S. Giorgio, S. Pricl, Z. Hayouka, L. Peng. Dynamic self-assembling supramolecular dendrimer nanosystems as potent antibacterial candidates against drug-resistant bacteria and biofilms. Nanoscale 14 (2022) 9286. https://doi.org/10.1039/d2nr02305a
C. Llamazares, N. Sanz Del Olmo, P. Ortega, R. Gomez, J. Soliveri, F.J. de la Mata, S. Garcia-Gallego, J.L. Copa-Patino. Antibacterial effect of carbosilanemetallo dendrimers in planktonic cells of gram-positive and gram-negative bacteria and Staphylococcus aureus biofilm. Biomolecules 9(9) (2019) 405. https://doi.org/10.3390/biom9090405
X. Han, Y. Liu, Y. Ma, M. Zhang, Z. He, T.N. Siriwardena, H, Xu, Y. Bai, X. Zhang, J.L. Reymond, M. Qiao. Peptide dendrimers G3KL and TNS18 inhibit Pseudomonas aeruginosa biofilms. Applied Microbiology Biotechnology 103 (2019) 5821-5830. https://doi.org/10.1007/s00253-019-09801-3
M. Gide, A. Nimmagadda, M. Su, M. Wang, P. Teng, C. Li, R. Gao, H. Xu, Q. Li, J. Cai. Nano-Sized Lipidated dendrimers as potent and broad-spectrum antibacterial agents. Macromolocular and Rapid Communication 39 (2018) 1800622. https://doi.org/10.1002/marc.201800622
R.T Rozenbaum, O.G.C. Andrén, H.C. van der Mei, W. Woudstra, H.J. Busscher, M. Malkoch, P.K. Sharma. Penetration and accumulation of dendrons with different peripheral composition in Pseudomonas aeruginosa biofilms. Nano Letters 19 (2019) 4327-4333. https://doi.org/10.1021/acs.nanolett.9b00838
E. Andreozzi, F. Barbieri, M.F. Ottavian, L. Giorgi, F. Bruscolini, A. Manti, M. Battisetelli, L. Sabatini, A. Pianetti. Dendrimers and Polyamino-Phenolic Ligands: Activity of New Molecules Against Legionella pneumophila Biofilms. Frontiers in Microbiology 7 (2016) 289. https://doi.org/10.3389/fmicb.2016.00289
M. Bergmann, G. Michaud, R. Visini, X. Jin, E. Gillon, A. Stocker, A. Imberty, T. Darbre, J.L. Reymond. Multivalency effects on Pseudomonas aeruginosa biofilm inhibition and dispersal by glycopeptide dendrimers targeting lectin LecA. Organic and Biomolecular Chemistry 14 (2016) 138. https://doi.org/10.1039/c5ob01682g
G. Michaud, R. Visini, M. Bergmann, G. Salerno, R. Bosco, E. Gillon, B. Richichi, C. Nativi, A. Imberty, A. Stocker, T. Darbre, J.L. Reymond. Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. Chemical Science 7 (2016) 166. https://doi.org/10.1039/c5sc03635f
M. Emma, A. Johansson, E. Kolomiets, L. But, R.U. Kadam, M. Cacciarini, K. Bartels, S.P. Diggle, M. Camara, P. Williams, R. Loris, C. Nativi, F. Rosenau, K. Jaeger, T. Darbre, J.L. Reymond. Inhibition and Dispersion of Pseudomonas aeruginosa Biofilms by Glycopeptide Dendrimers Targeting the Fucose-Specific Lectin LecB. Chemistry & Biology 15 (2008) 1249-1257. https://doi.org/10.1016/j.chembiol.2008.10.009
A.J. Huh, Y.J. Kwon. Nanoantibiotic: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics-resistant era. Journal of Control Release 156 (2011) 128-145. https://doi.org/10.1016/j.jconrel.2011.07.002
U. Singh, M.M. Dar, A.A. Hashmi. Dendrimers: synthetic strategies, properties and applications. Oriental Journal of Chemistry 30(3) (2014) 911-922. https://doi.org/10.13005/ojc/300301
S. Mignani, X. Shi, V. Cena, J. Rodrigues, H. Tomas, J. Majoral. Jean-Pierre MajoralEngineered non-invasive functionalized dendrimer/ dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. Journal of Control Release 332 (2021) 346-366. https://doi.org/10.1016/j.jconrel.2021.03.003
Y. Kim, E.J. Park, D.H. Na. Recent progress in dendrimer-based nanomedicine develop¬ment. Archive Pharmacy 41 (2018) 571-582. https://doi: 10.1007/s12272-018-1008-4
A. Janaszewska, J. Lazniewska, P. Trzepinski, M. Marcinkowska, B. Klajnert-Maculewicz. Cytotoxicity of dendrimers. Biomolecules 9 (2019) 330. https://doi.org/10.3390/biom9080330
A. Falanga, V. Del Genio, S. Galdiero. Peptides and Dentdrimers: How to combat viral and bacterial infections. Pharmaceutics 13 (2021) 101. https://doi.org/10.3390/pharmaceutics13010101
S. Sharifi, S. ZununiVahed, A. Jahangiri. Dendrimers as drug delivery systems; the benefits and challenges. Journal of Advance in Chemistry and Pharmaceutical Material 2(2) (2019) 119-123. https://api.semanticscholar.org/CorpusID:210908029
R.M. Kannan, E. Nance, S. Kannan, D.A. Tomalia. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. Journal of Intermediary Medicine 276 (2014) 579-617. https://doi.org/10.1111/joim.12280
S. Liu, X. Cai, W. Xue, D. Ma, W. Zhang. Chitosan derivatives co-delivering nitric oxide and methicillin for the effective therapy to the methicillin-resistant S. aureus infection. Carbohydrate and Polymer 234 (2020) 115928. https://doi.org/10.1016/j.carbpol.2020.115928
X. Qi, Y. Qin, X. Fan, Y. Qin, Z. Jiang, Z. Wu. Carboxymethyl Chitosan-Modified Polyamidoamine Dendrimer Enables Progressive Drug Targeting of Tumors via pH-Sensitive Charge Inversion. Journal of Biomedicine and Nanotechnology 12(4) (2016) 667-678. https://doi.org/10.1166/jbn.2016.2206
H. Yang. Targeted nanosystems: advances in targeted dendrimers for cancer therapy. Nanomedicine 12 (2016) 309-316. https://doi.org/10.1016/j.nano.2015.11.012
L. Zhou, L. Gan, H. Li, X. Yang. Studies on the interactions between DNA and PAMAM with fluorescent probe [Ru(phen)2d ppz]2+. Journal of Pharmaceutical Biomedicine 43 (2007) 330-334. https://doi.org/10.1016/j.jpba.2006.06.021
R.V. de Araujo, S.S. Santos, E.I. Ferreira, J. Giarolla. New advances in general biomedical applications of PAMAM dendrimers. Molecules 23 (2018) 2849. https://doi.org/10.3390/molecules23112849
J.B. Pryor, B.J. Harper, S.L. Harper. Comparative toxicological assessment of PAMAM and thiophosphoryl .B dendrimers using embryonic zebrafish. International Journal of Nanomedicine 9 (2014) 1947-1956. https://doi.org/10.2147/ijn.s60220
H.W. VanKoten, W.M. Dlakic, R. Engel, M.J. Cloninger. Synthesis and biological activity of highly cationic dendrimer antibiotics. Molecular Pharmacology 13 (2016) 3827-3834. https://doi.org/10.1021/acs.molpharmaceut.6b00628
B.V. Worley, K.M. Schilly, M.H. Schoenfisch. Anti-Biofilm efficacy of dual-action nitric oxide-releasing alkyl chain modified poly(amidoamine) dendrimers. Molecular Pharmacology 12 (2015) 1573-1583. https://doi.org/10.1021/acs.molpharmaceut.5b00006
F.C. Fang. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. Journal of Clinical Investigation 99 (1997) 2818-2825. https://doi.org/10.1172/jci119473
T.Z. Mehrizi, M.S. Ardestani, S.A. Kafiabad. Review Study of dendrimer nanoparticles influences on stored platelet in order to treat patients (2001-2020). Current Nanoscience 17 (2021) 304-318. https://doi.org/10.2174/1566524021666210708154736
M.H. Han, J. Chen, J. Wang, S.L. Chen, X.T. Wang. Blood compatibility of polyamidoamine dendrimers and erythrocyte protection. Journal of Biomedical and Nanotechnology 6 (2010) 82-92. https://doi.org/10.1166/jbn.2010.1096
R. Duncan, L. Izzo. L. Dendrimer biocompatibility and toxicity. Advance in Drug Delivery Review 57 (2005) 2215-2237.https://doi.org/10.1016/j.addr.2005.09.019
M. Dabkowska, Z. Ulańczyk, K. Łuczkowska, D. Rogińska, A Sobuś, M. Wasilewska, M. Olszewska,. K. Jakubowska, B. Machalinski. The role of the electrokinetic charge of neurotrophis-based nanocarriers: Protein distribution, toxicity, and oxidative stress in in vitro setting. Journal of Nanobiotechnology 19 (2021) 258. https://doi.org/10.1186/s12951-021-00984-4
G. Thiagarajan, K. Greish, H. Ghandehari. Charge affects the oral toxicity of poly(amidoamine) dendrimers. European Journal of Pharmacy and Biopharmacy 84 (2013) 330-334. https://doi.org/10.1016/j.ejpb.2013.01.019
A.E. Enciso, B. Neun, J. Rodriguez, A.P. Ranjan, M.A. Dobrovolskaia, E.E. Simanek. Nanoparticle Effects on Human Platelets in Vitro: A Comparison between PAMAM and Triazine Dendrimers. Molecules 21 (2016) 428. https://doi.org/10.3390/molecules21040428
M.A. Dobrovolskaia, A.K. Patri, J. Simak, J.B, Hall, J. Semberova, S.H. De Paoli Lacerda, H, Silvia, S.E. McNeil. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Molecular Pharmaceutics 9 (2012) 382-393.https://doi.org/10.1021/mp200463e
G. Hannon, J. Lysaght, N.J. Liptrott, A. Prina-Mello. Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. Advances in Science 6 (2019) 1900133. https://doi.org/10.1002/advs.201900133
J.C. Roberts, M.K. Bhalgat, R.T. Zera. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. Journal of Biomedical and Material Research 30 (1996) 53-65. https://doi.org/10.1002/(SICI)1097-4636(199601)30:1%3C53::AID-JBM8%3E3.0.CO;2-Q
L. Albertazzi, L. Gherardini, M. Brondi, S. Sulis Sato, A. Bifone, T. Pizzorusso, G.M. Ratto, G. Bardi. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Molecular Pharmaceutics 10 (2013) 249-260. https://doi.org/10.1021/mp300391v
A. Ayub, S. Wettig. An Overview of Nanotechnologies for Drug Delivery to the Brain. Pharmaceutics 14 (2022) 224. https://doi.org/10.3390/pharmaceutics14020224
G. Thiagarajan, S. Sadekar, K. Greish, A. Ray, H. Ghandehari. Evidence of oral translocation of anionic G6.5 dendrimers in mice. Molecular Pharmaceutics 10 (2013) 988-998. https://doi.org/10.1021/mp300436c
K.L. Aillon, Y. Xie, N. El-Gendy, C.J. Berkland, M.L. Forrest. Effects of nanomaterial physicochemical properties on in vivo toxicity. Advance Drug Delivery Review 61 (2009) 457-466. https://doi.org/10.1016/j.addr.2009.03.010
S. Sadekar, H. Ghandehari. Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery. Advance Drug Delivery Review 64 (2012) 571-588. https://doi.org/10.1016/j.addr.2011.09.010
Y. Li, X. Zeng, S. Wang, Y. Sun, Z. Wang, J. Fan, P. Song, D. Ju. Inhibition of autophagy protects against PAMAM dendrimers-induced hepatotoxicity. Nanotoxicology 9 (2015) 344-355. https://doi.org/10.3109/17435390.2014.930533
V.K. Yellepeddi, H. Ghandehari. Poly (amido amine) dendrimers in oral delivery. Tissue Barriers 4 (2016) e1173773. https://doi.org/10.1080/21688370.2016.1173773
D. Hubbard, H. Ghandehari, D.J. Brayden. Transepithelial transport of PAMAM dendrimers across isolated rat jejunal mucosae in ussing chambers. Biomacromolecules 15 (2014) 2889-2895. https://doi.org/10.1021/bm5004465
F. Qu, R. Geng, Y. Liu, J. Zhu. Advanced nanocarrier-and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics 12 (2022) 3372. https://doi.org/10.7150/thno.69999
Y. Gao, J. Wang, M. Chai, X. Li, Y. Deng, Q. Jin, J. Ji. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ASC Nano 14 (2020) 5686-5699. https://doi.org/10.1021/acsnano.0c00269
A. Mohapatra, S. Uthaman, I.K. Park. Polyethylene glycol nanoparticles as promising tools for anticancer therapeutics, Polymeric nanoparticles as a promising tool for anticancer therapeutics, P. Kesharwani,K.M. Paknikar, V. Gajbhiye, Eds., Elsevier, Gwangju, Republic of Korea, 2019 p. 205-231 .https://doi.org/10.1016/b978-0-12-816963-6.00010-8
M.N. Ho, L.G. Bach, D.H. Nguyen, C.H. Nguyen, C.K. Nguyen , Q.N. Tran,, N.V. Nguyen, T.T. Hoang Thi. PEGylated PAMAM dendrimers loading oxaliplatin with prolonged release and high payload without burst effect. Biopolymers 110(7) (2019) e23272. https://doi.org/10.1002/bip.23272
S. Zhu, M. Hong, L. Zhang, G. Tang, Y. Jiang, Y. Pei. PEGylated PAMAM dendrimer¬doxo¬rubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharmaceutical Research 27 (2009) 162-174. https://doi.org/10.1007/s11095-009-9992-1
G. Wang, D. Zhu, Z. Zhou, Y. Piao, J. Tang, Y. Shen. A glutathione-specific and intracellularly labile polymeric nanocarrier for efficient and safe cancer gene delivery. ACS Applied Material Interface 12 (2020) 14825-14838. https://doi.org/10.1021/acsami.9b22394
M. Parsian, P. Mutlu, S. Yalcin, A. Tezcaner, U. Gunduz. Half generations magnetic PAMAM dendrimers as an effective system for targeted gemitabine delivery. International Journal of Pharmacy 515 (2016) 104-113. https://doi.org/10.1016/j.ijpharm.2016.10.015
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.