Natural serine proteases and their applications in combating amyloid formation
Review article
DOI:
https://doi.org/10.5599/admet.2551Keywords:
Amyloidosis, lumbrokinase, serratiopeptidase, nattokinase, prion disease, Alzheimer’s disease
Abstract
Background and purpose: Amyloidosis is a group of diseases including diabetes type II and neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, prion disease, etc., where a common trait is observed; accumulation of misfolded protein at different parts of the body, especially the brain which manifests the typical symptoms like dementia, movement disorders, etc. These misfolded proteins, named amyloids, are protease resistant and thus it becomes difficult to manage these diseases in vivo. Enzymes that catalyse the complete breakdown of proteins are known as proteases. The peptide bonds in proteins are degraded by these serine proteases, which cause amyloid disaggregation. Experimental approach: We have searched for related articles using the search engines Google Scholar, PubMed, and Scopus for the past 10 years, selected the relevant articles, and written the outcomes and benefits of protease using the medical topic “serine protease” and the following text phrases -keratinase, lumbrokinase, serratiopeptidase, nattokinase. Key results: Alkaline serine proteases exhibit activity within the neutral to alkaline pH range. They are most capable of degrading host complement proteins, cytokines, and host clotting factors mostly due to their serine centre or metallotype. Because of its potential usage in food, pharmaceutical, and other industrial domains, this category of enzymes has been extensively investigated. Specifically, serine proteases are a group of enzymes that can be consumed orally and are stable in our gastrointestinal tract. Conclusion: In this review, we discussed the role of different serine proteases in amyloid aggregate inhibition and their potential application in treating amyloidosis.
Downloads
References
S.K. Metkar, S. Udayakumar, A. Girigoswami, K. Girigoswami. Amyloidosis-history and development, emphasis on insulin and prion amyloids. Brain Disorders 13 (2024) 100106. https://doi.org/https://doi.org/10.1016/j.dscb.2023.100106.
A. Girigoswami, M. Ramalakshmi, N. Akhtar, S.K. Metkar, K. Girigoswami. ZnO Nanoflower petals mediated amyloid degradation-An in vitro electrokinetic potential approach. Materials Science and Engineering C 101 (2019) 169-178. https://doi.org/10.1016/j.msec.2019.03.086.
S. Udayakumar, S.K. Metkar, A. Girigoswami, B. Deepika, G. Janani, L. Kanakaraj, K. Girigoswami. Exploring the amyloid degradation potential of nanoformulated carrageenan-bridging in vitro and in vivo perspectives. International Journal of Biological Macromolecules 279 (2024) 134814. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2024.134814.
A. Jablaoui, A. Kriaa, N. Akermi, H. Mkaouar, A. Gargouri, E. Maguin, M. Rhimi. Biotechnological applications of serine proteases: a patent review. Recent Patents on Biotechnology 12 (2018) 280-287. https://doi.org/10.2174/1872208312666180924112007.
S. Patel. A critical review on serine protease: Key immune manipulator and pathology mediator. Allergologia et Immunopathologia 45 (2017) 579-591. https://doi.org/10.1016/j.aller.2016.10.011.
E. Di Cera. Serine proteases. IUBMB life 61 (2009) 510-515. https://doi.org/10.1002/iub.186.
L. Hedstrom. Serine protease mechanism and specificity. Chemical Reviews 102 (2002) 4501-4524. https://doi.org/10.1021/cr000033x.
M.J. Page, E. Di Cera. Serine peptidases: classification, structure and function. Cellular and Molecular Life Sciences 65 (2008) 1220-1236. https://doi.org/10.1007/s00018-008-7565-9.
J.D. Tyndall, T. Nall, D.P. Fairlie. Proteases universally recognize beta strands in their active sites. Chemical Reviews 105 (2005) 973-1000. https://doi.org/10.1021/cr040669e.
N. Barzkar, Z. Khan, S.T. Jahromi, S. Pourmozaffar, M. Gozari, R. Nahavandi. A critical review on marine serine protease and its inhibitors: A new wave of drugs? International Journal of Biological Macromolecules 170 (2021) 674-687. https://doi.org/10.1016/j.ijbiomac.2020.12.134.
B.M. Stojanovski, L.A. Pelc, E. Di Cera. Thrombin has dual trypsin-like and chymotrypsin-like specificity. Journal of Thrombosis and Haemostasis 22 (2024) 1009-1015. https://doi.org/10.1016/j.jtha.2023.12.026.
R.-L. Hsu, K.-T. Lee, J.-H. Wang, L.Y.-L. Lee, R.P.-Y. Chen. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. Journal of Agricultural and Food Chemistry 57 (2009) 503-508. https://doi.org/10.1021/jf803072r.
S. Mukherjee, D.S. Ningthoujam, L. Jaya Devi, M.B.R. Laboratory. P4‐033: Degradation of amyloid‐beta aggregates by microbial keratinases. Alzheimer's & Dementia 11 (2015) P778-P778. https://doi.org/10.1016/j.jalz.2015.06.1737.
W. Yang, W. Wang, Y. Ma, Q. Yang, P. Li, S. Du. Bioevaluation of Pheretima vulgaris Antithrombotic Extract, PvQ, and Isolation, Identification of Six Novel PvQ-Derived Fibrinolytic Proteases. Molecules 26 (2021) 4946. https://doi.org/10.3390/molecules26164946.
R. Sinha, S. Herat, K. Chauhan, D. Valani. Earthworms: the'unheralded soldiers of mankind'and'farmer's friend'working day and night under the soil: reviving the dreams of Sir Charles Darwin for promoting sustainable agriculture. American-Eurasian Journal of Agricultural and Environmental Science 5 (2009) 5-13. https://doi.org/hdl.handle.net/10072/30153.
M.J. Shipitalo, R.-C. Le Bayon. Quantifying the Effects of Earthworms on Soil Aggregation and Porosity, in Earthworm Ecology, C.A. Edwards (Ed.), CRC Press, Boca Raton, USA, 2004, 183-200. https://doi.org/10.1201/9781420039719.pt5.
C.A. Edwards, N.Q. Arancon, P.J. Bohlen, P. Hendrix, Biology and Ecology of Earthworms, Springer New York, NY, USA, 2022, ISBN 038774942X. https://doi.org/10.1007/978-0-387-74943-3.
S. Afreen, A. Shaikh. Therapeutic uses of earthworm–a review. International Journal of Advanced Ayurveda, Yoga, Unani, Siddha Homeopathy 9 (2020) 571-580. https://doi.org/10.23953/cloud.ijaayush.469.
H. Sumi, N. Nakajima, H. Mihara. A very stable and potent fibrinolytic enzyme found in earthworm Lumbricus rubellus autolysate. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 106 (1993) 763-766. https://doi.org/10.1016/0305-0491(93)90160-7.
L. Stephani, P. Rahayu, D. Retnoningrum, M.T. Suhartono, H. Rachmawati, R.R. Tjandrawinata. Purification and proteomic analysis of potent fibrinolytic enzymes extracted from Lumbricus rubellus. Proteome Science 21 (2023) 8. https://doi.org/10.1186/s12953-023-00206-9.
F. Wang, C. Wang, M. Li, L. Gui, J. Zhang, W. Chang. Purification, characterization and crystallization of a group of earthworm fibrinolytic enzymes from Eisenia fetida. Biotechnology Letters 25 (2003) 1105-1109. https://doi.org/10.1023/a:1024196232252.
Q.T.T. Nguyen, H. Rhee, M. Kim, M.Y. Lee, E.-J. Lee. Lumbrokinase, a Fibrinolytic Enzyme, Prevents Intra-Abdominal Adhesion by Inhibiting the Migrative and Adhesive Activities of Fibroblast via Attenuation of the AP-1/ICAM-1 Signaling Pathway. BioMed Research International 2023 (2023). https://doi.org/10.1155/2023/4050730.
N. Nakajima, H. Mihara, H. Sumi. Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus. Bioscience, Biotechnology, and Biochemistry 57 (1993) 1726-1730. https://doi.org/10.1271/bbb.57.1726.
T. Ge, Z.-J. Sun, S.-H. Fu, G.-D. Liang. Cloning of thrombolytic enzyme (lumbrokinase) from earthworm and its expression in the yeast Pichia pastoris. Protein Expression and Purification 42 (2005) 20-28. https://doi.org/10.1016/j.pep.2005.04.005.
M.K. Verma, K. Pulicherla. Lumbrokinase-a potent and stable fibrin-specific plasminogen activator. International Journal of Bio-Science and Bio-Technology 3(2) (2011) 57-69. https://gvpress.com/journals/IJBSBT/vol3_no2/5.pdf
S. Munawar, M. Sagir, G. Mustafa, M.A. Ali, A.K. Niazi, A. Parvaiz, F. Yasmin, F. Mansoor, S. Kanwal, M. Rasheed. In silico analyses of predicted substitutions in fibrinolytic protein ‘Lumbrokinase-6’suggest enhanced activity. Process Biochemistry 110 (2021) 292-301. https://doi.org/10.1016/j.procbio.2021.08.022.
G.-Q. Dong, X.-L. Yuan, Y.-J. Shan, Z.-H. Zhao, J.-P. Chen, Y.-W. Cong. Molecular cloning and characterization of cDNA encoding fibrinolytic enzyme-3 from earthworm Eisenia foetida. Acta Biochimica et Biophysica Sinica 36 (2004) 303-308. https://doi.org/10.1093/abbs/36.4.303.
X. Yuan, C. Cao, Y. Shan, Z. Zhao, J. Chen, Y. Cong. Expression and characterization of earthworm Eisenia foetida Lumbrokinase‐3 in Pichia pastoris. Preparative Biochemistry & Biotechnology 36 (2006) 273-279. https://doi.org/10.1080/10826060600716703.
M. Sugimoto, N. Nakajima. Molecular cloning, sequencing, and expression of cDNA encoding serine protease with fibrinolytic activity from earthworm. Bioscience, Biotechnology, and Biochemistry 65 (2001) 1575-1580. https://doi.org/doi.org/10.1271/bbb.65.1575.
L.H. Takahashi, R. Radhakrishnan, R.E. Rosenfield Jr, E.F. Meyer Jr, D.A. Trainor. Crystal structure of the covalent complex formed by a peptidyl. alpha.,. alpha.-difluoro-. beta.-keto amide with porcine pancreatic elastase at 1.78. ANG. resolution. Journal of the American Chemical Society 111 (1989) 3368-3374. https://doi.org/10.1021/ja00191a039.
M. Marquart, J. Walter, J. Deisenhofer, W. Bode, R. Huber. The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors. Acta Crystallographica Section B: Structural Science 39 (1983) 480-490. https://doi.org/10.1107/S010876818300275X.
F. Wang, C. Wang, M. Li, J.-P. Zhang, L.-L. Gui, X.-M. An, W.-R. Chang. Crystal structure of earthworm fibrinolytic enzyme component B: a novel, glycosylated two-chained trypsin. Journal of Bolecular Biology 348 (2005) 671-685. https://doi.org/10.1016/j.jmb.2005.02.055.
F. Wang, C. Wang, M. Li, L. Gui, J. Zhang, W. Chang. Crystallization and preliminary crystallographic analysis of earthworm fibrinolytic enzyme component B from Eisenia fetida. Acta Crystallographica Section D: Biological Crystallography 60 (2004) 933-935. https://doi.org/10.1107/S0907444904004895.
Y. Tang, D. Liang, T. Jiang, J. Zhang, L. Gui, W. Chang. Crystal structure of earthworm fibrinolytic enzyme component a: revealing the structural determinants of its dual fibrinolytic activity. Journal of Molecular Biology 321 (2002) 57-68. https://doi.org/10.1016/S0022-2836(02)00559-4.
F. Blasi, J.-D. Vassalli, K. Danø. Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors. The Journal of Cell Biology 104 (1987) 801-804. https://doi.org/10.1083/jcb.104.4.801.
S. Kasai, H. Arimura, M. Nishida, T. Suyama. Proteolytic cleavage of single-chain pro-urokinase induces conformational change which follows activation of the zymogen and reduction of its high affinity for fibrin. Journal of Biological Chemistry 260 (1985) 12377-12381. https://doi.org/10.1016/S0021-9258(17)39035-X.
K.-C. Young, G.-Y. Shi, D.-H. Wu, L.-C. Chang, B.-I. Chang, C.-P. Ou, H.-L. Wu. Plasminogen activation by streptokinase via a unique mechanism. Journal of Biological Chemistry 273 (1998) 3110-3116. https://doi.org/10.1074/jbc.273.5.3110.
S. Szarka, E. Sihota, H. Habibi, S.-L. Wong. Staphylokinase as a plasminogen activator component in recombinant fusion proteins. Applied and Environmental Microbiology 65 (1999) 506-513. https://doi.org/10.1128/AEM.65.2.506-513.1999.
M. Ali, M. Salim Hossain, M. Islam, S.I. Arman, G. Sarwar Raju, P. Dasgupta, T.F. Noshin. Aspect of thrombolytic therapy: a review. The Scientific World Journal 2014 (2014). https://doi.org/10.1155/2014/586510.
M. Verstraete. Third-generation thrombolytic drugs. The American Journal of Medicine 109 (2000) 52-58. https://doi.org/10.1016/S0002-9343(00)00380-6.
W.-L. Wang, Y.-M. Hsu, M.-L. Lin, S.-S. Chen, Y.-H. Lai, C.-H. Huang, C.-H. Yao. Ex Vivo Model to Evaluate the Antibacterial and Anti-Inflammatory Effects of Gelatin–Tricalcium Phosphate Composite Incorporated with Emodin and Lumbrokinase for Bone Regeneration. Bioengineering 10 (2023) 906. https://doi.org/10.3390/bioengineering10080906.
L. Jin, H. Jin, G. Zhang, G. Xu. Changes in coagulation and tissue plasminogen activator after the treat¬ment of cerebral infarction with lumbrokinase. Clinical Hemorheology and Microcirculation 23 (2000) 213-218. https://content.iospress.com/articles/clinical-hemorheology-and-microcirculation/ch324
Y.-G. Zhao, H. Li, W. Xu, J. Luo, R.-A. Xu. An overview of the fibrinolytic enzyme from earthworm. Chinese Journal of Natural Medicines 8 (2010) 301-308. https://resource.iyp.tw/static.iyp.tw/916/files/51badbe435e29.pdf
J. Liu, A. Solanki, M.J. White, J.A. Hubbell, P.S. Briquez. Therapeutic use of α2-antiplasmin as an antifibrinolytic and hemostatic agent in surgery and regenerative medicine. NPJ Regenerative Medicine 7 (2022) 34. https://doi.org/10.1038/s41536-022-00230-x.
T. Li, J. Ren, T. Li, Y. Wang, Advances in Applied Biotechnology: Proceedings of the 2nd International Conference on Applied Biotechnology (ICAB 2014)-Volume I, 2015, pp. 541-546.
N. Iannucci, S. Camperi, O. Cascone. Purification of lumbrokinase from Eisenia fetida using aqueous two-phase systems and anion-exchange chromatography. Separation and Purification Technology 64 (2008) 131-134. https://doi.org/10.1016/j.seppur.2008.08.014.
T.T.B. Phan, T.D. Ta, D.T.X. Nguyen, L.A. Van Den Broek, G.T.H. Duong. Purification and characterization of novel fibrinolytic proteases as potential antithrombotic agents from earthworm Perionyx excavatus. AMB Express 1 (2011) 26. https://doi.org/10.1186/2191-0855-1-26.
J.X. Wu, X.Y. Zhao, R. Pan, R.Q. He. Glycosylated trypsin-like proteases from earthworm Eisenia fetida. International Journal of Biological Macromolecules 40 (2007) 399-406. https://doi.org/10.1016/j.ijbiomac.2006.10.001.
K.S. Katheem, M.H. Ibrahim, S. Quaik, S. Ahmed Ismail, M.H. Ibrahim, S. Quaik, S.A. Ismail. Earthworm Based Products, Scope and Future Perspectives. Prospects of Organic Waste Management and the Significance of Earthworms (2016) 231-243. https://doi.org/10.1007/978-3-319-24708-3_10.
Q.T.T. Nguyen, H. Rhee, M. Kim, M.Y. Lee, E.-J. Lee. Lumbrokinase, a Fibrinolytic Enzyme, Prevents Intra‐Abdominal Adhesion by Inhibiting the Migrative and Adhesive Activities of Fibroblast via Attenuation of the AP‐1/ICAM‐1 Signaling Pathway. BioMed Research International 2023 (2023) 4050730. https://doi.org/10.1155/2023/4050730.
H. Ji, L. Wang, H. Bi, L. Sun, B. Cai, Y. Wang, J. Zhao, Z. Du. Mechanisms of lumbrokinase in protection of cerebral ischemia. European Journal of Pharmacology 590 (2008) 281-289. https://doi.org/10.1016/j.ejphar.2008.05.037.
C. Hwang, D. Kim, J. Kim, S. Huh. In vivo evaluation of lumbrokinase, a fibrinolytic enzyme extracted from Lumbricus rubellus, in a prosthetic vascular graft. Journal of Cardiovascular Surgery 43 (2002) 891-894. https://www.minervamedica.it/en/journals/cardiovascular-surgery/article.php?cod=R37Y2002N06A0891
Y.-H. Wang, S.-A. Li, C.-H. Huang, H.-H. Su, Y.-H. Chen, J.T. Chang, S.-S. Huang. Sirt1 activation by post-ischemic treatment with lumbrokinase protects against myocardial ischemia-reperfusion injury. Frontiers in Pharmacology 9 (2018) 636. https://doi.org/10.3389/fphar.2018.00636.
Y.-H. Wang, K.-M. Chen, P.-S. Chiu, S.-C. Lai, H.-H. Su, M.-S. Jan, C.-W. Lin, D.-Y. Lu, Y.-T. Fu, J.-M. Liao. Lumbrokinase attenuates myocardial ischemia-reperfusion injury by inhibiting TLR4 signaling. Journal of Molecular and Cellular Cardiology 99 (2016) 113-122. https://doi.org/10.1016/j.yjmcc.2016.08.004.
S.R. Nair. Serratiopeptidase: An integrated view of multifaceted therapeutic enzyme. Biomolecules 12 (2022) 1468. https://doi.org/10.3390/biom12101468.
S.B. Jadhav, N. Shah, A. Rathi, V. Rathi, A. Rathi. Serratiopeptidase: Insights into the therapeutic applications. Biotechnology Reports 28 (2020) e00544. https://doi.org/https://doi.org/10.1016/j.btre.2020.e00544.
P.R. Salamone, R.J. Wodzinski. Production, purification and characterization of a 50-kDa extracellular metalloprotease from Serratia marcescens. Applied Microbiology and Biotechnology 48 (1997) 317-324. https://doi.org/10.1007/s002530051056.
K. Miyata, K. Maejima, K. Tomoda, M. Isono. Serratia protease: Part I. Purification and general properties of the enzyme. Agricultural and Biological Chemistry 34 (1970) 310-318. https://doi.org/10.1080/00021369.1970.10859598.
S. Ethiraj, S. Gopinath. Production, purification, characterization, immobilization, and application of Serrapeptase: a review. Frontiers in Biology 12 (2017) 333-348. https://doi.org/10.1007/s11515-017-1461-3.
A. Raghvi, K. Priya, D. Balaji. Varied Clinical Presentations of Allergic Fungal Rhinosinusitis-A Case Series. Indian Journal of Otolaryngology and Head & Neck Surgery 75 (2023) 571-578. https://doi.org/10.1007/s12070-022-03338-0.
R. Redfern. The ‘Miracle’Enzyme is Serrapeptase, the 2nd Gift from Silkworms Giving the answer to Pain, Inflammation and Clear Arteries. Naturally Healthy Publications, 2009, ISBN 978-1910521007. https://www.amazon.com/Miracle-Enzyme-Serrapeptase-Silkworms-Inflammation/dp/1910521000/ref=monarch_sidesheet_title#
K. Matsumoto, H. Maeda, K. Takata, R. Kamata, R. Okamura. Purification and characterization of four proteases from a clinical isolate of Serratia marcescens kums 3958. Journal of Bacteriology 157 (1984) 225-232. https://doi.org/10.1128/jb.157.1.225-232.1984.
K. Nakahama, K. Yoshimura, R. Marumoto, M. Kikuchi, I.S. Lee, T. Hase, H. Matsubara. Cloning and sequencing of Serratia protease gene. Nucleic Acids Research 14 (1986) 5843-5855. https://doi.org/10.1093/nar/14.14.5843.
V. Gupte, U. Luthra. Analytical techniques for serratiopeptidase: A review. Journal of Pharmaceutical Analysis 7 (2017) 203-207. https://doi.org/10.1016/j.jpha.2017.03.005.
K. Tao, X. Yu, Y. Liu, G. Shi, S. Liu, T. Hou. Cloning, expression, and purification of insecticidal protein Pr596 from locust pathogen Serratia marcescens HR-3. Current Microbiology 55 (2007) 228-233. https://doi.org/10.1007/s00284-007-0096-z.
S.C. Braunagel, M.J. Benedik. The metalloprotease gene of Serratia marcescens strain SM6. Molecular and General Genetics MGG 222 (1990) 446-451. https://doi.org/10.1007/BF00633854.
S. Letoffe, P. Delepelaire, C. Wandersman. Cloning and expression in Escherichia coli of the Serratia marcescens metalloprotease gene: secretion of the protease from E. coli in the presence of the Erwinia chrysanthemi protease secretion functions. Journal of Bacteriology 173 (1991) 2160-2166. https://doi.org/10.1128/jb.173.7.2160-2166.1991.
N. Moriya, M. Nakata, M. Nakamura, M. Takaoka, S. Iwasa, K. Kato, A. Kakinuma. Intestinal absorp¬tion of serrapeptase (TSP) in rats. Biotechnology and Applied Biochemistry 20 (1994) 101-108. https://doi.org/10.1111/j.1470-8744.1994.tb00308.x.
S. Bhagat, M. Agarwal, V. Roy. Serratiopeptidase: a systematic review of the existing evidence. International Journal of Surgery 11 (2013) 209-217. https://doi.org/10.1016/j.ijsu.2013.01.010.
G.C. Jickling, X. Zhan, B.P. Ander, R.J. Turner, B. Stamova, H. Xu, Y. Tian, D. Liu, R.R. Davis, P.A. Lapchak. Genome response to tissue plasminogen activator in experimental ischemic stroke. BMC Genomics 11 (2010) 254. https://doi.org/10.1186/1471-2164-11-254.
J.f. Mei, S.f. Cai, Y. Yi, X.d. Wang, G.q. Ying. Study of the fibrinolytic activity of serrapeptase and its in vitro thrombolytic effects. Brazilian Journal of Pharmaceutical Sciences 58 (2022) e201004. https://doi.org/10.1590/s2175-97902022e201004.
T. Al-Khateeb, Y. Nusair. Effect of the proteolytic enzyme serrapeptase on swelling, pain and trismus after surgical extraction of mandibular third molars. International Journal of Oral and Maxillofacial surgery 37 (2008) 264-268. https://doi.org/10.1016/j.ijom.2007.11.011.
S.P. Jadav, N.H. Patel, T.G. Shah, M.V. Gajera, H.R. Trivedi, B.K. Shah. Comparison of antiinflammatory activity of serratiopeptidase and diclofenac in albino rats. Journal of Pharmacology and Pharmacotherapeutics 1 (2010) 116-117. https://doi.org/10.4103/0976-500X.72362.
K. Suma, H. Manasa, A. Likhitha, T. Nagamani. Isolation, Purification, and Characterization of Serratiopeptidase Enzyme from Serratia marcescens. Int. J. Innov. Sci. Res. Technol 5 (2020) 156-161. https://doi.org/10.38124/IJISRT20JUL135.
D. Kumar, D. Verma, V. Abbot. A review on pharmaceutical, pharmacological and chemical aspects of serratiopeptidase as anti-inflammatory agent. Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.01.256.
B.P. Krishna, B.P. Reddy, D.Y. Kumar, M. Ummar, V. Shekhar, R.V.C. Tiwari. Role of serratiopeptidase and dexamethasone in the control of postoperative swelling. Annals of Maxillofacial Surgery 10 (2020) 108-113. https://doi.org/10.4103/ams.ams_249_19.
V. Yadav, S. Sharma, A. Kumar, S. Singh, V. Ravichandiran. Serratiopeptidase Attenuates Lipopolysaccharide-Induced Vascular Inflammation by Inhibiting the Expression of Monocyte Chemoattractant Protein-1. Current Issues in Molecular Biology 45 (2023) 2201-2212. https://doi.org/10.3390/cimb45030142.
V.D. Menon, M. Muthusekhar. Effectiveness of anti-inflammatory properties of combination of bromelain, trypsin and rutoside with combination of diclofenac and serratiopeptidase following surgical removal of impacted mandibular third molar-a randomised double blinded clinical trial. Int J Dentistry Oral Sci 8 (2021) 4217-4221. https://doi.org/dx.doi.org/10.19070/2377-8075-21000859.
J.K. Mammdoh, L.H. Al-Alsadoon, G.A. Taqa, A.A. Taqa. Evaluation of Anti-inflammatory Effect of Topical Serratiopeptidase in Mice. Inflammation 12 (2022) 13. https://doi.org/10.25258/ijddt.12.1.29.
A. Mazzone, M. Catalani, M. Costanzo, A. Drusian, A. Mandoli, S. Russo, E. Guarini, G. Vesperini. Evaluation of Serratia peptidase in acute or chronic inflammation of otorhinolaryngology pathology: a multicentre, double-blind, randomized trial versus placebo. Journal of International Medical Research 18 (1990) 379-388. https://doi.org/10.1177/0300060590018005.
A. Dhiman, R. Purohit. Identification of potential mutational hotspots in serratiopeptidase to address its poor pH tolerance issue. Journal of Biomolecular Structure and Dynamics 41 (2023) 8831-8843. https://doi.org/10.1080/07391102.2022.2137699.
A. Dhiman, R. Purohit. Targeting tachykinin peptides involved in viral infections through in silico approach: Screening the unforeseen potency of serratiopeptidase. Journal of Molecular Liquids 392 (2023) 123504. https://doi.org/10.1016/j.molliq.2023.123504.
K.K. Gupta, A. Rahman, A. Kumar, P. Gavel, P. Asia. Adjuvant therapy with Serratiopeptidase and Vitamin D for COVID-19 patients: A new perspective. Int. J. Med. Sci 4 (2021) 282-287. https://www.researchgate.net/publication/352282548_Adjuvant_therapy_with_Serratiopeptidase_and_Vitamin_D_for_COVID-19_patients_A_new_perspective
Y. Kase, H. Seo, Y. Oyama, M. Sakata, K. Tomoda, K. Takahama, T. Hitoshi, Y. Okano, T. Miyata. A new method for evaluating mucolytic expectorant activity and its application. II. Application to two proteolytic enzymes, serratiopeptidase and seaprose. Arzneimittel-forschung 32 (1982) 374-378. https://europepmc.org/article/med/7049188
M. Gioia, C. Ciaccio, P. Calligari, G. De Simone, D. Sbardella, G. Tundo, G.F. Fasciglione, A. Di Masi, D. Di Pierro, A. Bocedi. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochemical Pharmacology 182 (2020) 114225. https://doi.org/10.1016/j.bcp.2020.114225.
V. Gomathy, V. Manigandan, N. Vignesh, A. Thabitha, R. Saravanan. Evaluation of antibacterial, teratogenicity and antibiofilm effect of sulfated chitosans extracted from marine waste against microorganism. Journal of Bioactive and Compatible Polymers 36 (2021) 249-258. https://doi.org/10.1177/08839115211014225.
L. Selan, R. Papa, M. Tilotta, G. Vrenna, A. Carpentieri, A. Amoresano, P. Pucci, M. Artini. Serratiopeptidase: a well-known metalloprotease with a new non-proteolytic activity against S. aureus biofilm. BMC Microbiology 15 (2015) 207 . https://doi.org/10.1186/s12866-015-0548-8.
C.S. Devi, R. Elizabeth Joseph, H. Saravanan, S.J. Naine, V.M. Srinivansan. Screening and molecular characterization of Serratia marcescens VITSD2: A strain producing optimum serratiopeptidase. Frontiers in Biology 8 (2013) 632-639. https://doi.org/10.1007/s11515-013-1284-9.
M. Mecikoglu, B. Saygi, Y. Yildirim, E. Karadag-Saygi, S.S. Ramadan, T. Esemenli. The effect of proteolytic enzyme serratiopeptidase in the treatment of experimental implant-related infection. JBJS 88 (2006) 1208-1214. https://doi.org/10.2106/JBJS.E.00007.
B. Vidmar, M. Vodovnik. Microbial keratinases: enzymes with promising biotechnological applications. Food Technology and Biotechnology 56 (2018) 312-328. https://doi.org/10.17113/ftb.56.03.18.5658.
N.E. Nnolim, C.C. Udenigwe, A.I. Okoh, U.U. Nwodo. Microbial keratinase: Next generation green catalyst and prospective applications. Frontiers in Microbiology 11 (2020) 580164. https://doi.org/10.3389/fmicb.2020.580164.
S.B. Prusiner. Prions. Proceedings of the National Academy of Sciences 95 (1998) 13363-13383. https://doi.org/10.1073/pnas.95.23.13363.
S.B. Prusiner. Novel proteinaceous infectious particles cause scrapie. Science 216 (1982) 136-144. https://doi.org/10.1126/science.6801762.
L.M. Ascari, S.C. Rocha, P.B. Gonçalves, T.C. Vieira, Y. Cordeiro. Challenges and advances in antemortem diagnosis of human transmissible spongiform encephalopathies. Frontiers in Bioengineering and Biotechnology 8 (2020) 585896. https://doi.org/10.3389/fbioe.2020.585896.
W.A. Rutala, D.J. Weber. Guideline for disinfection and sterilization of prion-contaminated medical instruments. Infection Control & Hospital Epidemiology 31 (2010) 107-117. https://doi.org/10.1086/650197.
D. Taylor. Inactivation of transmissible degenerative encephalopathy agents: a review. The Veterinary Journal 159 (2000) 10-17. https://doi.org/10.1053/tvjl.1999.0406.
R. Gupta, R. Sharma, Q.K. Beg. Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Critical Reviews in Biotechnology 33 (2013) 216-228. https://doi.org/10.3109/07388551.2012.685051.
S. Kamaraj, S. Vuppu. In-silico study of bacterial keratinase and optimization of extraction procedure for keratin from Country chicken and Indian blue rock pigeon feathers. Kuwait Journal of Science 51 (2024) 100149. https://doi.org/10.1016/j.kjs.2023.10.016.
D.S. Ningthoujam, S. Mukherjee, L.J. Devi, E.S. Singh, K. Tamreihao, R. Khunjamayum, S. Banerjee, D. Mukhopadhyay. In vitro degradation of β-amyloid fibrils by microbial keratinase. Alzheimer's & Dementia: Translational Research & Clinical Interventions 5 (2019) 154-163. https://doi.org/10.1016/j.trci.2019.03.003.
M. Yoshioka, T. Miwa, H. Horii, M. Takata, T. Yokoyama, K. Nishizawa, M. Watanabe, M. Shinagawa, Y. Murayama. Characterization of a proteolytic enzyme derived from a Bacillus strain that effectively degrades prion protein. Journal of Applied Microbiology 102 (2007) 509-515. https://doi.org/10.1111/j.1365-2672.2006.03080.x.
E.A. Okoroma, D. Purchase, H. Garelick, R. Morris, M.H. Neale, O. Windl, O.O. Abiola. Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions. PloS One 8 (2013) e68099. https://doi.org/10.1371/journal.pone.0068099.
J.P. Langeveld, J.-J. Wang, D.F. Van de Wiel, G.C. Shih, G.J. Garssen, A. Bossers, J.C. Shih. Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. The Journal of Iinfectious Diseases 188 (2003) 1782-1789. https://doi.org/10.1086/379664.
D. Purchase. Microbial keratinases: Characteristics, biotechnological applications and potential. The handbook of microbial bioresources. Wallingford: CAB International Publishing (2016) 634-674. https://doi.org/10.1079/9781780645216.0634.
Z. Hui, H. Doi, H. Kanouchi, Y. Matsuura, S. Mohri, Y. Nonomura, T. Oka. Alkaline serine protease produced by Streptomyces sp. degrades PrPSc. Biochemical and Biophysical Research Communications 321 (2004) 45-50. https://doi.org/10.1016/j.bbrc.2004.06.100.
R. Sharma, R. Gupta. Coupled action of γ-glutamyl transpeptidase-glutathione and keratinase effectively degrades feather keratin and surrogate prion protein, Sup 35NM. Bioresource Technology 120 (2012) 314-317. https://doi.org/10.1016/j.biortech.2012.06.038
K. Nishinari, Y. Fang, T. Nagano, S. Guo, R. Wang, Soy as a food ingredient, in Proteins in food pro-ces¬sing, R.Y. Yada (Ed.), Elsevier, 2018, p. 149-186. https://doi.org/10.1016/B978-0-08-100722-8.00007-3.
G. Gallelli, G. Di Mizio, C. Palleria, A. Siniscalchi, P. Rubino, L. Muraca, E. Cione, M. Salerno, G. De Sarro, L. Gallelli. Data recorded in real life support the safety of nattokinase in patients with vascular diseases. Nutrients 13 (2021) 2031. https://doi.org/10.3390/nu13062031.
T. Yokoyama, T. Nakamura, M. Kimijima, K. Mandokoro, M. Tokumaru, A. Takatsuka, N. Narisawa, R. Kobayashi, F. Takenaga. Subtilisin NAT, a subtilisin-like serine protease present in fermented soybean “natto” extract, inhibits Streptococcus mutans biofilm formation. Food Science and Technology Research 27 (2021) 537-542. https://doi.org/10.3136/fstr.27.537.
H. Kamata, Y. Yamagata, T. Nakamura, T. Nakajima, K. Oda, S. Murao, E. Ichishima. Characterization of the complex between α2-macroglobulin and a serine proteinase from Bacillus natto. Agricultural and Biological Chemistry 53 (1989) 2695-2702. https://doi.org/10.1080/00021369.1989.10869721.
M. Fujita, K. Nomura, K. Hong, Y. Ito, A. Asada, S. Nishimuro. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochemical and Bbiophysical Research Communications 197 (1993) 1340-1347. https://doi.org/10.1006/bbrc.1993.2624.
D. Cai, C. Zhu, S. Chen. Microbial production of nattokinase: current progress, challenge and prospect. World Journal of Microbiology and Biotechnology 33 (2017) 84. https://doi.org/10.1007/s11274-017-2253-2.
E. Selvarajan, N. Bhatnagar. Nattokinase: an updated critical review on challenges and perspectives. Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents) 15 (2017) 128-135. https://doi.org/10.2174/1871525716666171207153332.
M. Fujita, K. Hong, Y. Ito, R. Fujii, K. Kariya, S. Nishimuro. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. Biological and Pharmaceutical Bulletin 18 (1995) 1387-1391. https://doi.org/10.1248/bpb.18.1387.
L. Wang, J. Meng, X. Yu, J. Wang, Y. Zhang, M. Zhang, Y. Zhang, H. Wang, H. Feng, Q. Tian. Construction of highly active and stable recombinant nattokinase by engineered bacteria and computational design. Archives of Biochemistry and Biophysics 760 (2024) 110126. https://doi.org/10.1016/j.abb.2024.110126.
C. Chen, Q.-D. Ai, S.-F. Chu, Z. Zhang, N.-H. Chen. NK cells in cerebral ischemia. Biomedicine & Pharmacotherapy 109 (2019) 547-554. https://doi.org/10.1016/j.biopha.2018.10.103.
J.-M. Wang, H.-Y. Chen, S.-M. Cheng, S.-H. Chen, L.-L. Yang, F.-C. Cheng. Nattokinase reduces brain infarction, fibrinogen and activated partial thromboplastin time against cerebral ischemia-reperfusion injury. Journal of Food and Drug Analysis 20 (2012) 1. https://doi.org/10.6227/jfda.2012200317
C.-H. Hsia, M.-C. Shen, J.-S. Lin, Y.-K. Wen, K.-L. Hwang, T.-M. Cham, N.-C. Yang. Nattokinase decreases plasma levels of fibrinogen, factor VII, and factor VIII in human subjects. Nutrition Research 29 (2009) 190-196. https://doi.org/10.1016/j.nutres.2009.01.009.
Y. Guangbo, S. Min, S. Wei, M. Lixin, Z. Chao, W. Yaping, H. Zunxi. Heterologous expression of nattokinase from B. subtilis natto using Pichia pastoris GS115 and assessment of its thrombolytic activity. BMC Biotechnology 21 (2021) 49. https://doi.org/10.1186/s12896-021-00708-4.
A. Krishnamurthy, P.D. Belur, S.B. Subramanya. Methods available to assess therapeutic potential of fibrinolytic enzymes of microbial origin: a review. Journal of Analytical Science and Technology 9 (2018) 10. https://doi.org/10.1186/s40543-018-0143-3.
R. Pinontoan, A. Sanjaya, J. Jo. Fibrinolytic characteristics of Bacillus subtilis G8 isolated from natto. Bioscience of Microbiota, Food and Health 40 (2021) 144-149. https://doi.org/10.12938/bmfh.2020-071.
S. Kamiya, M. Hagimori, M. Ogasawara, M. Arakawa. In vivo evaluation method of the effect of nattokinase on carrageenan-induced tail thrombosis in a rat model. Acta Haematologica 124 (2010) 218-224. https://doi.org/10.1007/s10930-021-10023-8.
M. Taniguchi, R. Aida, K. Saito, T. Kikura, A. Ochiai, E. Saitoh, T. Tanaka. Identification and characterization of multifunctional cationic peptides from enzymatic hydrolysates of soybean proteins. Journal of Bioscience and Bioengineering 129 (2020) 59-66. https://doi.org/10.1016/j.jbiosc.2019.06.016.
S. Liu, J. Zhu, C. Liu, J. Li, Z. Li, J. Zhao, H. Liu. Synthesis of sustained release/controlled release nanoparticles carrying nattokinase and their application in thrombolysis. Die Pharmazie-An International Journal of Pharmaceutical Sciences 76 (2021) 145-149. https://doi.org/10.1691/ph.2021.0155.
C. Yatagai, M. Maruyama, T. Kawahara, H. Sumi. Nattokinase-promoted tissue plasminogen activator release from human cells. Pathophysiology of Haemostasis and Thrombosis 36 (2007) 227-232. https://doi.org/10.1159/000252817.
H. Wu, Y. Wang, Y. Zhang, F. Xu, J. Chen, L. Duan, T. Zhang, J. Wang, F. Zhang. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biology 32 (2020) 101500. https://doi.org/10.1016/j.redox.2020.101500.
L. Zhou, N. Hao, X. Li, J. Chen, R. Yang, C. Song, Y. Sun, Q. Zhang. Nattokinase mitigated dextran sulfate sodium-induced chronic colitis by regulating microbiota and suppressing tryptophan metabolism via inhibiting IDO-1. Journal of Functional Foods 75 (2020) 104251. https://doi.org/10.1016/j.jff.2020.104251.
Z. Huang, T.K. Ng, W. Chen, X. Sun, D. Huang, D. Zheng, J. Yi, Y. Xu, X. Zhuang, S. Chen. Nattokinase attenuates retinal neovascularization via modulation of Nrf2/HO-1 and glial activation. Investigative Ophthalmology & Visual Science 62 (2021) 25-25. https://doi.org/10.1167/iovs.62.6.25.
M.M. Elbakry, S.Z. Mansour, H. Helal, E.S. Ahmed. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflam-matory mediators in rats. Environmental Science and Pollution Research 29 (2022) 75086-75100. https://doi.org/10.1007/s11356-022-21126-9.
H.-Y. Chou, L.-H. Liu, C.-Y. Chen, I.-F. Lin, D. Ali, A.Y.-L. Lee, H.-M.D. Wang. Bifunctional mechanisms of autophagy and apoptosis regulations in melanoma from Bacillus subtilis natto fermentation extract. Food and Chemical Toxicology 150 (2021) 112020. https://doi.org/10.1016/j.fct.2021.112020.
Y. Song, J. Yu, J. Song, S. Wang, T. Cao, Z. Liu, X. Gao, Y. Wei. The antihypertensive effect and mechanisms of bioactive peptides from Ruditapes philippinarum fermented with Bacillus natto in spontaneously hypertensive rats. Journal of Functional Foods 79 (2021) 104411. https://doi.org/10.1016/j.jff.2021.104411.
S.M. Keziah, C.S. Devi. Fibrinolytic and ACE Inhibitory Activity of Nattokinase Extracted from Bacillus subtilis VITMS 2: A Strain Isolated from Fermented Milk of Vigna unguiculata. The Protein Journal 40 (2021) 876-890. https://doi.org/10.1007/s10930-021-10023-8.
S.K. Metkar, A. Girigoswami, R. Murugesan, K. Girigoswami. In vitro and in vivo insulin amyloid de-gradation mediated by Serratiopeptidase. Materials Science and Engineering: C 70 (2017) 728-735. https://doi.org/10.1016/j.msec.2016.09.049.
S.K. Metkar, S. Ghosh, A. Girigoswami, K. Girigoswami. Prion peptide 106-126 degradation potential of Serratiopetidase and Lumbrokinase-an in vitro and in silico perspective. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 18 (2019) 723-731. https://doi.org/10.2174/1871527318666191021150002.
S.K. Metkar, A. Girigoswami, D.D. Bondage, U.G. Shinde, K. Girigoswami. The potential of lumbrokinase and serratiopeptidase for the degradation of Aβ 1–42 peptide–an in vitro and in silico approach. International Journal of Neuroscience 134 (2022) 112-123. https://doi.org/10.1080/00207454.2022.2089137.
S.K. Metkar, A. Girigoswami, R. Murugesan, K. Girigoswami. Lumbrokinase for degradation and reduction of amyloid fibrils associated with amyloidosis. Journal of Applied Biomedicine 15 (2017) 96-104. https://doi.org/10.1016/j.jab.2017.01.003.
S.K. Metkar, A. Girigoswami, R. Vijayashree, K. Girigoswami. Attenuation of subcutaneous insulin induced amyloid mass in vivo using Lumbrokinase and Serratiopeptidase. International Journal of Biological Macromolecules 163 (2020) 128-134. https://doi.org/10.1016/j.ijbiomac.2020.06.256.
P. Velander, L. Wu, F. Henderson, S. Zhang, D.R. Bevan, B. Xu. Natural product-based amyloid inhibitors. Biochemical Pharmacology 139 (2017) 40-55. https://doi.org/10.1016/j.bcp.2017.04.004.
L. Ciccone, N. Tonali, S. Nencetti, E. Orlandini. Natural compounds as inhibitors of transthyretin amyloidosis and neuroprotective agents: Analysis of structural data for future drug design. Journal of Enzyme Inhibition and Medicinal Chemistry 35 (2020) 1145-1162. https://doi.org/10.1080/14756366.2020.1760262.
J. Cummings, G. Lee, A. Ritter, K. Zhong. Alzheimer's disease drug development pipeline: 2018. Alzheimer's & Dementia: Translational Research & Clinical Interventions 4 (2018) 195-214. https://doi.org/10.1016/j.trci.2018.03.009.
J. Sevigny, P. Chiao, T. Bussière, P.H. Weinreb, L. Williams, M. Maier, R. Dunstan, S. Salloway, T. Chen, Y. Ling. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537 (2016) 50-56. https://doi.org/10.1038/nature19323.
H. Guthrie, L.S. Honig, H. Lin, K.M. Sink, K. Blondeau, A. Quartino, M. Dolton, M. Carrasco-Triguero, Q. Lian, T. Bittner. Safety, tolerability, and pharmacokinetics of crenezumab in patients with mild-to-moderate Alzheimer’s disease treated with escalating doses for up to 133 weeks. Journal of Alzheimer's disease 76 (2020) 967-979. https://doi.org/10.3233/JAD-200134.
M. Cantillon, N. Andreasen, N. Prins. Phase 1/2a intravenous and subcutaneous oligomer-specific antibody KHK6640 in mild to moderate Alzheimer’s disease. The Journal of Prevention of Alzheimer's Disease 11 (2024) 65-70. https://doi.org/10.14283/jpad.2024.2.
H. Davtyan, A. Ghochikyan, I. Petrushina, A. Hovakimyan, A. Davtyan, A. Poghosyan, A.M. Marleau, N. Movsesyan, A. Kiyatkin, S. Rasool. Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer's disease: prelude to a clinical trial. Journal of Neuroscience 33 (2013) 4923-4934. https://doi.org/10.1523/JNEUROSCI.4672-12.2013.
S.L. Lowe, B.A. Willis, A. Hawdon, F. Natanegara, L. Chua, J. Foster, S. Shcherbinin, P. Ardayfio, J.R. Sims. Donanemab (LY3002813) dose‐escalation study in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions 7 (2021) e12112. https://doi.org/10.1002/trc2.12112.
C.J. Swanson, Y. Zhang, S. Dhadda, J. Wang, J. Kaplow, R.Y. Lai, L. Lannfelt, H. Bradley, M. Rabe, A. Koyama. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimer's Research & Therapy 13 (2021) 80. https://doi.org/10.1186/s13195-021-00813-8.
M. Matijevic, H. Watanabe, Y. Sato, F. Bernier, S. McGrath, L. Burns, N. Yamamoto, M. Ogo, Z. Dezso, J. Chow. P4–163: a single dose of the beta-secretase inhibitor, e2609, decreases CSF bace1 enzymatic activity in cynomolgus monkeys. Alzheimer's & Dementia 11 (2015) P841. https://doi.org/10.1016/j.jalz.2015.06.1870.
R. Dodel, A. Rominger, K. Blennow, F. Barkhof, S. Wietek, S. Haag, P. Bartenstein, M. Farlow, F. Jessen. P4‐411: A randomized, double‐blind, placebo‐controlled dose‐finding trial of intravenous immunoglobulin (IVIG; Octagam® 10%, Octapharma AG) in patients with mild to moderate Alzheimer's disease (GAM10‐04). Alzheimer's & Dementia 7 (2011) e55-e56. https://doi.org/10.1016/j.jalz.2011.09.107.
H.J. Yu, S.P. Dickson, P.-N. Wang, M.-J. Chiu, C.-C. Huang, C.-C. Chang, H. Liu, S.B. Hendrix, J.-C. Dodart, A. Verma. Safety, tolerability, immunogenicity, and efficacy of UB-311 in participants with mild Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase 2a study. EBioMedicine 94 (2023) 104665. https://doi.org/10.1016/j.ebiom.2023.104665.
U. Neumann, M. Ufer, L.H. Jacobson, M.L. Rouzade‐Dominguez, G. Huledal, C. Kolly, R.M. Lüönd, R. Machauer, S.J. Veenstra, K. Hurth. The BACE‐1 inhibitor CNP 520 for prevention trials in Alzheimer's disease. EMBO Molecular Medicine 10 (2018) e9316. https://doi.org/10.15252/emmm.201809316.
H. Jacobsen, L. Ozmen, A. Caruso, R. Narquizian, H. Hilpert, B. Jacobsen, D. Terwel, A. Tanghe, B. Bohrmann. Combined treatment with a BACE inhibitor and anti-Aβ antibody gantenerumab enhances amyloid reduction in APPLondon mice. Journal of Neuroscience 34 (2014) 11621-11630. https://doi.org/10.1523/JNEUROSCI.1405-14.2014.
C.E. Moussa. Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert Opinion on Investigational Drugs 26 (2017) 1131-1136. https://doi.org/10.1080/13543784.2017.1369527.
A.I. Abushouk, A. Elmaraezy, A. Aglan, R. Salama, S. Fouda, R. Fouda, A.M. AlSafadi. Bapineuzumab for mild to moderate Alzheimer’s disease: a meta-analysis of randomized controlled trials. BMC Neurology 17 (2017) 66. https://doi.org/10.1186/s12883-017-0850-1.
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.