Berberine HCl and diacerein loaded dual delivery transferosomes: Formulation and optimization using Box-Behnken design

Authors

  • Siddharth Singh Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India https://orcid.org/0000-0003-1699-2561
  • Rajendra Awasthi Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India https://orcid.org/0000-0002-1286-1874

DOI:

https://doi.org/10.5599/admet.2268

Keywords:

Inflammatory cytokines, pro-inflammatory, tumour necrosis factor, psoriasis, ultraflexible vesicles

Abstract

Introduction: Berberine is a poorly water-soluble alkaloid compound showing significant anti-inflammatory characteristics. It reduces the levels of pro-inflammatory and inflammatory cytokines, including tumour necrosis factor (TNF-????, IFN-????) and interleukin (IL-23, IL-12, and IL-23). Diacerein significantly reduces the splenomegaly associated with psoriasis. It downregulates the production of TNF-α and IL-12. Method: This study reported the development of transferosomes containing berberine HCl and diacerein using a film hydration method followed by optimization using a Box-Behnken design. Sodium deoxycholate was used as an edge activator. The impact of independent variables (amount of phosphatidylcholine, amount of edge activator, and sonication cycles) on dependent variables (particle size and entrapment efficiency) was examined. The optimized formulation was characterized for polydispersity index, vesicle size, entrapment efficiency, ζ potential, spectral analysis like Fourier transform infrared, thermal analysis, X-ray diffraction, deformability, transmission electron microscopy, antioxidant assay, in-vitro release, and ex-vivo skin permeation studies. Results: The optimized formulation had a particle size of 110.90±2.8 nm with high entrapment efficiency (89.50±1.5 of berberine HCl and 91.23±1.8 of diacerein). Deformability, polydispersity index, ζ potential, and antioxidant activity of the optimized formulation were 2.44, 0.296, -13.3, and 38.36 %, respectively. Optimized transferosomes exhibited 82.093±0.81 % and 85.02±3.81 % release of berberine HCl and diacerein after 24 h of dissolution study. The transdermal flux of optimized formulation was 0.0224 µg cm-2 h-1 (2.24 cm h-1 permeation coefficient) and 0.0462 µg cm-2 h-1 (4.62 cm h-1 permeation coefficient), respectively, for berberine HCl and diacerein. Raman analysis of treated pig skin confirmed that the transferosomes can permeate the skin. No change in the skin condition or irritation was observed in BALB/c mice. Formulation stored at 4 and 25±2 °C / 60±5 % relative humidity was stable for 3 months. Conclusions: Thus, the results demonstrated successful optimization of the transferosomes for the efficient topical delivery of berberine HCl and diacerein in the effective management of psoriasis.

Downloads

Download data is not yet available.

References

M. Pradhan, A. Alexander, M.R. Singh, D. Singh, S. Saraf, S. Saraf, Ajazuddin. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomedicine & Pharmacotherapy 107 (2018) 447-463. https://doi.org/10.1016/j.biopha.2018.07.156.

S. Singh, R. Awasthi. Breakthroughs and bottlenecks of psoriasis therapy: Emerging trends and advances in lipid based nano-drug delivery platforms for dermal and transdermal drug delivery. Journal of Drug Delivery Science and Technology 84 (2023) 104548. https://doi.org/10.1016/j.jddst.2023.104548.

S. Jindal, R. Awasthi, D. Singare, G.T. Kulkarni. Preparation and in vitro evaluation of tacrolimus loaded liposomal vesicles by two methods: A comparative study. Journal of Research in Pharmacy 25 (2021) 34-41. https://doi.org/10.35333/jrp.2021.292.

S. Parab, G. Doshi. An update on emerging immunological targets and their inhibitors in the treatment of psoriasis. International Immunopharmacology 113 (2022) 109341. https://doi.org/10.1016/j.intimp.2022.109341.

A. Rendon, K. Schäkel. Psoriasis pathogenesis and treatment. International Journal of Molecular Sciences 20 (2019) 1475. https://doi.org/10.3390/ijms20061475.

F. Mascarenhas-Melo, A. Carvalho, M.B.S. Gonçalves, A.C. Paiva-Santos, F. Veiga. Nanocarriers for the topical treatment of psoriasis - pathophysiology, conventional treatments, nanotechnology, regulatory and toxicology. European Journal of Pharmaceutics and Biopharmaceutics 176 (2022) 95-107 https://doi.org/10.1016/j.ejpb.2022.05.012.

V.K. Rapalli, G. Singhvi, S.K. Dubey, G. Gupta, D.K. Chellappan, K. Dua. Emerging landscape in psoriasis management: From topical application to targeting biomolecules. Biomedicine and Pharmacotherapy 106 (2018) 707-713. https://doi.org/10.1016/j.biopha.2018.06.136.

K. Yadav, K.K. Sahu, R. Yadav, W. Raza, S. Minz, M.R. Singh, D. Singh, M. Pradhan. A complex molecular landscape to drug delivery concept for achieving precise therapy in psoriasis. Medicine in Drug Discovery 22 (2024) 100183. https://doi.org/10.1016/j.medidd.2024.100183.

R. Bahuguna, R. Awasthi. Unlocking new dimensions in rheumatoid arthritis therapy: Harnessing the power of lipid based vesicles beyond traditional therapies. Journal of Drug Delivery Science and Technology 89 (2023) 105106. https://doi.org/10.1016/j.jddst.2023.105106.

S.A.T. Opatha, V. Titapiwatanakun, R. Chutoprapat. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 12 (2020) 855. https://doi.org/10.3390/pharmaceutics12090855.

R. Fernández-García, A. Lalatsa, L. Statts, F. Bolás-Fernández, M.P. Ballesteros, D.R. Serrano. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. International Journal of Pharmaceutics 573 (2020) 118817 https://doi.org/10.1016/j.ijpharm.2019.118817.

V. Parkash, S. Maan, V. Chaudhary, V. Jogpal, G. Mittal, V. Jain. Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in Albino Wistar rat. J Bioequiv Availab 10 (2018) 98-105. https://doi.org/10.4172/0975-0851.1000385.

R.P. Dhavale, S.J. Nadaf, M.S. Bhatia. Quantitative structure property relationship assisted development of fluocinolone acetonide loaded transfersomes for targeted delivery. Journal of Drug Delivery Science and Technology 65 (2021)102758. https://doi.org/10.1016/j.jddst.2021.102758.

A. Kumar, K. Chopra, M. Mukherjee, R. Pottabathini, D.K. Dhull. Current knowledge and pharmacological profile of berberine: An update. European Journal of Pharmacology 761 (2015) 288-297. https://doi.org/10.1016/j.ejphar.2015.05.068.

S. Sun, X. Zhang, M. Xu, F. Zhang, F. Tian, J. Cui, Y. Xia, C. Liang, S. Zhou, H. Wei, H. Zhao, G. Wu, B. Xu, X. Liu, G. Yang, Q. Wang, L. Zhang, Y. Gong, C. Shao, Y. Zou. Berberine downregulates CDC6 and inhibits proliferation via targeting JAK-STAT3 signaling in keratinocytes. Cell Death & Disease 10 (2019) 274. https://doi.org/10.1038/s41419-019-1510-8.

S.M. Brunner, A. Ramspacher, C. Rieser, J. Leitner, H. Heil, M. Ablinger, J. Tevini, M. Wimmer, A. Koller, J. Piñón Hofbauer, T.K. Felder, J.W. Bauer, B. Kofler, R. Lang, V. Wally. Topical diacerein decreases skin and splenic CD11c+ dendritic cells in psoriasis. International Journal of Molecular Sciences 24 (2023) 4324. https://doi.org/10.3390/ijms24054324.

K. Baxi, D. Majmundar, A. Patel, V. Chandibhamar, N. Patel, V. Majmundar. Diacerein in the treatment of chronic plaque psoriasis: A case report. Indian Journal of Drugs in Dermatology 8 (2022) 79. https://doi.org/10.4103/ijdd.ijdd_19_21.

G.F. Balata, M.M. Faisal, H.A. Elghamry, S.A. Sabry. Preparation and characterization of ivabradine HCl transfersomes for enhanced transdermal delivery. Journal of Drug Delivery Science and Technology 60 (2020) 101921. https://doi.org/10.1016/j.jddst.2020.101921.

A.K. Singh, S.S. Singh, A.S. Rathore, S.P. Singh, G. Mishra, R. Awasthi, S.K. Mishra, V. Gautam, S.K. Singh. Lipid-coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation. ACS Biomaterials Science & Engineering 7 (2021) 3737-3753. https://doi.org/10.1021/acsbiomaterials.1c00514.

G. Mishra, R. Awasthi, A.K. Singh, S. Singh, S.K. Mishra, S.K. Singh, M.K. Nandi. Intranasally co-administered berberine and curcumin loaded in transfersomal vesicles improved inhibition of amyloid formation and BACE-1. ACS Omega 7 (2022) 43290-43305. https://doi.org/10.1021/acsomega.2c06215.

D. Arora, S. Nanda. Quality by design driven development of resveratrol loaded ethosomal hydrogel for improved dermatological benefits via enhanced skin permeation and retention. International Journal of Pharmaceutics. 567 (2019) 118448. https://doi.org/10.1016/j.ijpharm.2019.118448.

M. Dahiya, R. Awasthi, J.P. Yadav, S. Sharma, K. Dua, H. Dureja. Chitosan based sorafenib tosylate loaded magnetic nanoparticles: Formulation and in-vitro characterization. International Journal of Biological Macromolecules 242 (2023) 124919. https://doi.org/10.1016/j.ijbiomac.2023.124919.

U. Varia, D. Joshi, M. Jadeja, H. Katariya, K. Detholia, V. Soni. Development and evaluation of ultradeformable vesicles loaded transdermal film of boswellic acid. Future Journal of Pharmaceutical Sciences 8 (2022) 1-16. https://doi.org/10.1186/s43094-022-00428-2.

H. Abd-Allah, M.H. Ragaie, E. Elmowafy. Unraveling the pharmaceutical and clinical relevance of the influence of syringic acid loaded linoleic acid transferosomes on acne. International Journal of Pharmaceutics 639 (2023) 122940. https://doi.org/10.1016/j.ijpharm.2023.122940.

G.E. Gómez, M.N. Calienni, S.D.V. Alonso, F.C. Alvira, J. Montanari. Raman spectroscopy to monitor the delivery of a nano-formulation of vismodegib in the skin. Applied Sciences 13 (2023) 7687. https://doi.org/10.3390/app13137687.

P. Bhardwaj, P. Tripathi, S. Pandey, R. Gupta, R.K. Khar, P.R. Patil. Improved dermal delivery of pentoxifylline niosomes for the management of psoriasis: development, optimization and in-vivo studies in imiquimod induced psoriatic plaque model. Journal of Drug Delivery Science and Technology 75 (2022) 103643. https://doi.org/10.1016/j.jddst.2022.103643.

K. Yadav, D. Singh, M.R. Singh. Nanovesicles delivery approach for targeting steroid mediated mechanism of antipsoriatic therapeutics. Journal of Drug Delivery Science and Technology 65 (2021) 102688. https://doi.org/10.1016/j.jddst.2021.102688.

M. Dahiya, R. Awasthi, K. Dua, H. Dureja. Sorafenib tosylate loaded superparamagnetic nanoparticles: Development, optimization and cytotoxicity analysis on HepG2 human hepatocellular carcinoma cell line. Journal of Drug Delivery Science and Technology 79 (2023) 104044. https://doi.org/10.1016/j.jddst.2022.104044.

M. Qushawy, A. Nasr, M. Abd-Alhaseeb, S. Swidan. Design, optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of Candida skin infections. Pharmaceutics 10 (2018) 26. https://doi.org/10.3390/pharmaceutics10010026.

S. Vasanth, A. Dubey, R. G S, S.A. Lewis, V.M. Ghate, S.A. El-Zahaby, S. Hebbar. Development and Inves¬tigation of vitamin C-enriched adapalene-loaded transfersome gel: A collegial approach for the treat¬ment of Acne vulgaris. AAPS PharmSciTech 21 (2020) 61. https://doi.org/10.1208/s12249-019-1518-5.

J.E. Shaji, M.A. Lal. Preparation, optimization and evaluation of transferosomal formulation for enhanced transdermal delivery of a COX-2 inhibitor. International Journal of Pharmacy and Pharmaceutical Sciences 6(1) (2014) 467-477.

A. Ahad, M. Aqil, K. Kohli, Y. Sultana, M. Mujeeb, Ali, A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine: Nanotechnology, Biology and Medicine 8(2) (2012) 237-249. https://doi.org/10.1016/j.nano.2011.06.004.

S. Jain, P. Jain, R.B. Umamaheshwari, N.K. Jain. Transfersomes a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Development and Industrial Pharmacy 29(9) (2003) 1013-1026. https://doi.org/10.1081/DDC-120025458.

R. Patel, S.K. Singh, S. Singh, N.R. Sheth, R. Gendle. Development and characterization of curcumin loaded transfersome for transdermal delivery. Journal of Pharmaceutical Sciences and Research 1(4) (2009) 71-80.

R. Bnyan, I. Khan, T. Ehtezazi, I. Saleem, S. Gordon, F. O'Neill, M. Roberts. Surfactant effects on lipid-based vesicles properties. Journal of Pharmaceutical Sciences 107 (2018) 1237-1246. https://doi.org/10.1016/j.xphs.2018.01.005.

M. Danaei, M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, M.R. Mozafari. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10 (2018) 57. https://doi.org/10.3390/pharmaceutics10020057.

P. Liu, G. Chen, J. Zhang. A Review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 27 (2022) 1372. https://doi.org/10.3390/molecules27041372.

M.D. Ansari, Z. Saifi, J. Pandit, I. Khan, P. Solanki, Y. Sultana, M. Aqil. Spanlastics a novel nanovesicular carrier: Its potential application and emerging trends in therapeutic delivery. AAPS PharmSciTech 23 (2022) 112. https://doi.org/10.1208/s12249-022-02217-9.

D. Choudhury, A. Jala, U.S. Murty, R.M. Borkar, S. Banerjee. In vitro and ex evaluations of berberine-loaded microparticles filled in-house 3D printed hollow capsular device for improved oral bioavailability. AAPS PharmSciTech 23 (2022) 89. https://doi.org/10.1208/s12249-022-02241-9.

M.U.K. Sahibzada, A. Sadiq, H.S. Faidah, M. Khurram, M.U. Amin, A. Haseeb, M. Kakar. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug Design, Development and Therapy 12 (2018) 303-312. https://doi.org/10.2147/DDDT.S156123.

S.K. Battu, M.A. Repka, S. Maddineni, A.G. Chittiboyina, M.A. Avery, S. Majumdar. Physicochemical characterization of berberine chloride: a perspective in the development of a solution dosage form for oral delivery. AAPS PharmSciTech 11 (2010) 1466-75. https://doi.org/10.1208/s12249-010-9520-y.

Z. Yan, M. Sun, Y. Lv. Novel berberine-based pharmaceutical salts with fatty acid anions: Synthesis, characterization, physicochemical properties. Journal of Molecular Liquids 360 (2022) 119397. https://doi.org/10.1016/j.molliq.2022.119397.

A.A. Eltobshi, E.A. Mohamed, G.M. Abdelghani, A.T. Nouh. Self-nanoemulsifying drug-delivery systems for potentiated anti-inflammatory activity of diacerein. International Journal of Nanomedicine 18 (2018) 6585-6602. https://doi.org/10.2147/IJN.S178819.

M.I. Khan, A. Madni, J. Hirvonen, L. Peltonen. Ultrasonic processing technique as a green preparation approach for diacerein-loaded niosomes. AAPS PharmSciTech 18 (2017) 1554-1563. https://doi.org/10.1208/s12249-016-0622-z.

D. Kesharwani, S.D. Paul, R. Paliwal, T. Satapathy. Development, QbD based optimization and in vitro characterization of Diacerein loaded nanostructured lipid carriers for topical applications. Journal of Radiation Research and Applied Sciences 16(2) (2023) 100565. https://doi.org/10.1016/j.jrras.2023.100565.

B.K. Ghyadh, E. Al-Khedairy. Solubility and dissolution enhancement of atorvastatin calcium using phospholipid solid dispersion technique. Iraqi Journal of Pharmaceutical Sciences 32 (2023) 244-253. https://doi.org/10.31351/vol32issSuppl.pp244-253.

Y.S. Hsieh, Y.F. Chen, Y.Y. Cheng, W.Y. Liu, Y.T. Wu. Self-emulsifying phospholipid preconcentrates for the enhanced photoprotection of luteolin. Pharmaceutics 14(9) (2022) 1896. https://doi.org/10.3390/pharmaceutics14091896.

Q. Zhao, X. Liu, S. Veldhuis, I. Zhitomirsky. Sodium deoxycholate as a versatile dispersing and coating-forming agent: A new facet of electrophoretic deposition technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects 588 (2020) 124382. https://doi.org/10.1016/j.colsurfa.2019.124382.

S. Sun, N.A. Liang, Y. Kawashima, D. Xia, F. Cui. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin. International Journal of Nanomedicine 28 (2011) 3049-3056. http://dx.doi.org/10.2147/IJN.S26450.

M.A. Naseef, H.K. Ibrahim, S.A.E. Nour. Solid form of lipid-based self-nanoemulsifying drug delivery systems for minimization of diacerein adverse effects: Development and bioequivalence evaluation in Albino rabbits. AAPS PharmSciTech 19 (2018) 3097-3109. https://doi.org/10.1208/s12249-018-1138-5.

L. Xiao, A.J. Poudel, L. Huang, Y. Wang, A.M.E. Abdalla, G. Yang. Nanocellulose hyperfine network achieves sustained release of berberine hydrochloride solubilized with β-cyclodextrin for potential anti-infection oral administration. International Journal of Biological Macromolecules 153 (2020) 633-640. https://doi.org/10.1016/j.ijbiomac.2020.03.030.

X. Guan, L. Jiang, L. Cai, L. Zhang, X. Hu. A new co-crystal of synthetic drug rosiglitazone with natural medicine berberine: Preparation, crystal structures, and dissolution. Molecules 25 (2020) 4288. https://doi.org/10.3390/molecules25184288.

H.J. Kim, S.H. Kim, H.M. Kim, Y.S. Kim, J.M. Oh. Surface roughness effect on the cellular uptake of layered double hydroxide nanoparticles. Applied Clay Science 202 (2021) 105992. https://doi.org/10.1016/j.clay.2021.105992.

A.H. Al Shuwaili, B.K. Rasool, A.A. Abdulrasool. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. European Journal of Pharmaceutics and Biopharmaceutics 102 (2016) 101-114. https://doi.org/10.1016/j.ejpb.2016.02.013.

J. Pleńkowska, M. Gabig-Cimińska, P. Mozolewski. Oxidative stress as an important contributor to the pathogenesis of psoriasis. International Journal of Molecular Sciences 21 (2020) 6206. https://doi.org/10.3390/ijms21176206.

M. Wang, H. Xia, X. Yang, Q. Zhang, Y. Li, Y. Wang, Y. Xia, Z. Xie. Berberine hydrochloride-loaded liposomes gel: Preparation, characterization and antioxidant activity. Indian Journal of Pharmaceutical Education and Research 57 (2023) 74-82. https://doi.org/10.5530/001954642087.

R.N. Abd-Ellatif, I.I. Hegab, M.M. Atef, M.T. Sadek, Y.M. Hafez. Diacerein protects against glycerol-induced acute kidney injury: Modulating oxidative stress, inflammation, apoptosis and necroptosis. Chemico-Biological Interactions 306 (2019) 47-53. https://doi.org/10.1016/j.cbi.2019.04.008.

I.F. Chukwuma, V.O. Apeh, F.N. Nwora, C.C. Nkwocha, S.E. Mba, E.C. Ossai. Phytochemical profiling and antioxidative potential of phenolic-rich extract of Cola acuminata nuts. Biointerface Research in Applied Chemistry 13(1) (2023) 29. https://doi.org/10.33263/BRIAC131.029.

N. Ghavipanje, M.H. Fathi Nasri, E. Vargas-Bello-Pérez. An insight into the potential of berberine in animal nutrition: Current knowledge and future perspectives. Journal of Animal Physiology and Animal Nutrition (Berl) 107 (2023) 808-829. https://doi.org/10.1111/jpn.13769.

Environment directorate joint meeting of the chemicals committee and the working party on chemicals, pesticides and biotechnology. Unclassified. ENV/JM/MONO(2011)36. Available from: https://www.oecd.org/env/ehs/organisationoftheenvironmenthealthandsafetyprogramme.htm (date accessed: 19.03.2024).

A.J. Guillot, M. Martínez-Navarrete, T.M. Garrigues, A. Melero. Skin drug delivery using lipid vesicles: A starting guideline for their development. Journal of Controlled Release 355 (2023) 624-654. https://doi.org/10.1016/j.jconrel.2023.02.006.

A. Zeb, O.S. Qureshi, H.S. Kim, J.H. Cha, H.S. Kim, J.K. Kim. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Internation Journal of Nanomedicine 11 (2016) 3813-3824. https://doi.org/10.2147/IJN.S109565.

Downloads

Published

29-04-2024 — Updated on 29-04-2024

Issue

Section

Original Scientific Articles

How to Cite

Berberine HCl and diacerein loaded dual delivery transferosomes: Formulation and optimization using Box-Behnken design. (2024). ADMET and DMPK, 12(3), 553-580. https://doi.org/10.5599/admet.2268

Similar Articles

1-10 of 159

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)