Recent advances in electrochemical determination of anticancer drug 5-fluorouracil

Authors

  • Totka Dodevska Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, Plovdiv, Bulgaria https://orcid.org/0000-0002-5231-7347
  • Dobrin Hadzhiev Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, Plovdiv, Bulgaria https://orcid.org/0000-0002-8056-1742
  • Ivan Shterev Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, Plovdiv, Bulgaria https://orcid.org/0000-0002-0722-4600

DOI:

https://doi.org/10.5599/admet.1711

Keywords:

Electrochemical detection, electroanalysis, pharmaceutical electrochemistry, sensor, analysis, cancer
Graphical Abstract

Abstract

Reliable, rapid, highly selective and sensitive analytical methods for the determination of antineoplastic agent 5-fluorouracil (5-FU) in human body fluids (blood serum/plasma and urine) are required to improve the chemotherapy regimen to reduce its toxicity and improve efficacy. Nowadays, electrochemical techniques provide a powerful analytical tool for 5-FU detection systems. This comprehensive review covers the advances in the development of electrochemical sensors for the quantitative determination of 5-FU, mainly focused on original studies reported from 2015 to date. We have summarized recent trends in the electrochemical sensor systems applied for the analysis of 5-FU in pharmaceutical formulations and biological samples, and critically evaluated the key performance metrics of these sensors (limit of detection, linear range, stability and recovery). Challenges and future outlooks in this field have also been discussed.

Downloads

Download data is not yet available.

References

D. Longley, D. Harkin, P. Johnston. 5-Fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer 3 (2003) 330-338. https://doi.org/10.1038/nrc1074

G.D. Heggie, J.P. Sommadossi, D.S. Cross, W.J. Huster, R.B. Diasio. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Research 47 (1987) 2203-2206. https://aacrjournals.org/cancerres/article-pdf/47/8/2203/2430813/cr0470082203.pdf

M. Breda, S. Barattè. A review of analytical methods for the determination of 5-fluorouracil in biological matrices. Analytical and Bioanalytical Chemistry 397(3) (2010) 1191-1201. https://doi.org/10.1007/s00216-010-3633-8

R.B. Diasio, B.E. Harris. Clinical Pharmacology of 5-Fluorouracil. Clinical Pharmacokinetics 16(4) (1989) 215-237. https://doi.org/10.2165/00003088-198916040-00002

K. Kadoyama, I. Miki, T. Tamura, J.B. Brown, T. Sakaeda, Y. Okuno. Adverse event profiles of 5-fluorouracil and capecitabine: data mining of the public version of the FDA Adverse Event Reporting System, AERS, and reproducibility of clinical observations. International Journal of Medical Sciences 9(1) (2012) 33-39. https://doi.org/10.7150/ijms.9.33

M. Chalabi-Dchar, T. Fenouil, C. Machon, A. Vincent, F. Catez, V. Marcel, H.C. Mertani, J.-C. Saurin, P. Bouvet, J. Guitton, N. D. Venezia, J.-J. Diaz. A novel view on an old drug, 5-fluorouracil: an unexpected RNA modifier with intriguing impact on cancer cell fate. NAR Cancer 3(3) (2021) zcab032. https://doi.org/10.1093/narcan/zcab032

J.J. Schneider, P. Galettis, J.H. Martin. Overcoming barriers to implementing precision dosing with 5-fluorouracil and capecitabine. British Journal of Clinical Pharmacology 87 (2021) 317-325. https://doi.org/10.1111/bcp.14723

J.J. Lee, J.H. Beumer, E. Chu. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemotherapy and Pharmacology 78(3) (2016) 447-464. https://doi.org/10.1007/s00280-016-3054-2

F. Casale, R. Canaparo, L. Serpe, E. Muntoni, C.D. Pepa, M. Costa, L. Mairone, G.P. Zara, G. Fornari, M. Eandi. Plasma concentrations of 5-fluorouracil and its metabolites in colon cancer patients. Pharmacological Research 50(2) (2004) 173-179. https://doi.org/10.1016/j.phrs.2004.01.006

M. Satyanarayana, K.Y. Goud, K.K. Reddy, K.V. Gobi. Biopolymer Stabilized Nanogold Particles on Carbon Nanotube Support as Sensing Platform for Electrochemical Detection of 5-Fluorouracil invitro. Electrochimica Acta 178 (2015) 608-616. http://dx.doi.org/10.1016/j.electacta.2015.08.036

N.-F. Semail, A.S.A. Keyon, B. Saad, S.S. Noordin, N.N.S.N.M. Kamal, N.N.M. Zain, J. Azizi, S. Kamaruzaman, N. Yahaya. Analytical method development and validation of anticancer agent, 5-fluorouracil, and its metabolites in biological matrices: An updated review. Journal of Liquid Chromatography & Related Technologies 43 (2020) 562-579. https://doi.org/10.1080/10826076.2020.1781654

V. Mirčeski, R. Gulaboski, B. Jordanoski, Š. Komorsky-Lovrić. Square-wave voltammetry of 5-fluorouracil. Journal of Electroanalytical Chemistry 490(1–2) (2000) 37-47. https://doi.org/10.1016/S0022-0728(00)00203-5

P.A. Pushpanjali, J.G. Manjunatha, N. Hareesha. An overview of recent developments of carbon-based sensors for the analysis of drug molecules. Journal of Electrochemical Science and Engineering 11(3) (2021) 161-177. https://doi.org/10.5599/jese.999

B.R. Adhikari, M. Govindhan, A. Chen. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds. Sensors (Basel) 15(9) (2015) 22490-508. https://doi.org/10.3390/s150922490

R. Kour, S. Arya, S.-J. Young, V. Gupta, P. Bandhoria, A. Khosla. Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. Journal of The Electrochemical Society 167(3) (2020) 037555. https://doi.org/10.1149/1945-7111/ab6bc4

A.C. Power, B. Gorey, S. Chandra, J. Chapman. Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnology Reviews 7(1) (2018) 19-41. https://doi.org/10.1515/ntrev-2017-0160

M. Pumera, A. Ambrosi, A. Bonanni, E.L.K. Chng, H.L. Poh. Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry 29(9) (2010) 954-965. https://doi.org/10.1016/j.trac.2010.05.011

E.B. Bahadır, M.K Sezgintürk. Applications of graphene in electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry 76 (2016) 1-14. https://doi.org/10.1016/j.trac.2015.07.008

L. Qian, A.R. Thiruppathi, R. Elmahdy, J. van der Zalm, A. Chen. Graphene-Oxide-Based Electrochemical Sensors for the Sensitive Detection of Pharmaceutical Drug Naproxen. Sensors 20 (2020) 1252. https://doi.org/10.3390/s20051252

L. Qian, S. Durairaj, S. Prins, A. Chen. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosensors and Bioelectronics 175 (2021) 112836. https://doi.org/10.1016/j.bios.2020.112836

Y. Fang, H. Chang, J. Li, Z. Li, D. Zhang. Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis. Critical Reviews in Analytical Chemistry (2022) 1-27. https://doi.org/10.1080/10408347.2022.2128633

X. Hua, X. Hou, X. Gong, G. Shen. Electrochemical behavior of 5-fluorouracil on a glassy carbon electrode modified with bromothymol blue and multi-walled carbon nanotubes. Analytical Methods 5 (2013) 2470. http://dx.doi.org/10.1039/c3ay40149a

V.P. Pattar, S.T. Nandibewoor. Electroanalytical method for the determination of 5-fluorouracil using a reduced graphene oxide/chitosan modified sensor. RSC Advances 5 (2015) 34292-34301. https:// doi.org/10.1039/C5RA04396D

]. C. A. Jyothi, N. P. Shetti, S. T. Nandibewoor. Development of Voltammetric Method for the Determination of an Anticancer Drug, 5-Flurouracil at a Multi-walled Carbon Nanotubes Paste Electrode. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46 (2016) 814-820. https://doi.org/10.1080/15533174.2014.989586

S.D. Bukkitgar, N.P. Shetti. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode. Materials Science and Engineering C 65 (2016) 262-268. http://dx.doi.org/10.1016/j.msec.2016.04.045

M. Rahimi-Nasrabadi, F. Ahmadi, H. Beigizadeh, M. S. Karimi, A. Sobhani-Nasab, Y. Joseph, H. Ehrlich, M. R. Ganjali. A modified sensitive carbon paste electrode for 5-fluorouracil based using a composite of praseodymium erbium tungstate. Microchemical Journal 154 (2020) 104654. https://doi.org/10.1016/j.microc.2020.104654

R. Chokkareddy, T. Niranjan, G.G. Redhi. Chapter 13 - Ionic liquid based electrochemical sensors and their applications, Editor(s): A.M.A. Inamuddin, S. Kanchi. Green Sustainable Process for Chemical and Environmental Engineering and Science, Elsevier (2020) 367-387. ISBN 9780128173862. https://doi.org/10.1016/B978-0-12-817386-2.00013-5

T. Zhan, L. Cao, W. Sun, W. Hou. Electrochemical behavior of 5-fluoro-1H-pyrimidine-2 on an ionic liquid modified carbon paste electrode. Analytical Methods 3 (2011) 2651. http://dx.doi.org/10.1039/c1ay05454f

R. Emamian, M. Ebrahimi, H. Karimi-Maleh. A Sensitive Sensor for Nano-Molar Detection of 5-Fluorouracil by Modifying a Paste Sensor with Graphene Quantum Dots and an Ionic Liquid. Journal of Nanostructures 10(2) (2020) 230-238. https://doi.org/10.22052/JNS.2020.02.004

M. Fouladgar. CuO-CNT Nanocomposite/Ionic Liquid Modified Sensor as New Breast Anticancer Approach for Determination of Doxorubicin and 5-Fluorouracil Drugs. Journal of The Electrochemical Society 165(13) (2018) B559-B564. https://doi.org/10.1149/2.1001811jes

M. Fouladgar. A Novel Electrochemical CuO-Nanostructure Platform for Simultaneous Determination of 6-thioguanine and 5-fluorouracil Anticancer Drugs. Acta Chimica Slovenica 67 (2020) 701-709. https://doi.org/10.17344/acsi.2019.4986

M. Roushani, Z. Saeidi, S. Hemati, M. Hosseini. Highly sensitive electrochemical determination of 5-fluorouracil using CuNPs/MWCNT/IL/Chit composite modified glassy carbon electrode. Advances in Nanochemistry 1 (2019) 73-77. https://doi.org/10.22126/anc.2019.11282

T. Dodevska, D. Hadzhiev, I. Shterev, Y. Lazarova. Application of biosynthesized metal nanoparticles in electrochemical sensors: Review. Journal of the Serbian Chemical Society 87 (2022) 401-435. https://doi.org/10.2298/JSC200521077D

D. Lima, G.N. Calac, A.G. Viana, C.A. Pessôa. Porphyran-capped gold nanoparticles modified carbon paste electrode: a simple and efficient electrochemical sensor for the sensitive determination of 5-flu¬oro¬uracil. Applied Surface Science 427 (2018) 742-753. http://dx.doi.org/10.1016/j.apsusc.2017.08.228

S.K.D. Vishnu, P. Ranganathan, S.-P. Rwei, C. Pattamapromc, T. Kavitha, P. Sarojini. New reductant-free synthesis of gold nanoparticles-doped chitosanbased semi-IPN nanogel: A robust nanoreactor for exclusively sensitive 5-fluorouracil sensor. International Journal of Biological Macromolecules 148 (2020) 79-88. https://doi.org/10.1016/j.ijbiomac.2020.01.108

A. K. S. Kumar, Y. Zhang, D. Li, R. G. Compton. A mini-review: How reliable is the drop casting technique? Electrochemistry Communications 121 (2020) 106867. https://doi.org/10.1016/j.elecom.2020.106867

E.M. Frazar, R.A. Shah, T.D. Dziubla, J.Z. Hilt. Multifunctional temperature-responsive polymers as advanced biomaterials and beyond. Journal of Applied Polymer Science 137 (2019) 48770. https:// doi.org/10.1002/app.48770

C. Chen, P. Zhao, C. Li, Y. Xie, J. Fei. Highly Sensitive Temperature-responsive Sensor Based on PS-PDEA-PS/C60-MWCNTs for Reversible Switch Detection of Catechol. Electroanalysis 31 (2019) 913. https://doi.org/10.1002/elan.201800769

B. Mutharani, P. Ranganathan, S.-M. Chen. Temperature-reversible switched antineoplastic drug 5-fluorouracil electrochemical sensor based on adaptable thermo-sensitive microgel encapsulated PEDOT. Sensors & Actuators: B. Chemical 304 (2020) 127361. https://doi.org/10.1016/j.snb.2019.127361

T. Dodevska, D. Hadzhiev, I. Shterev. A Review on Electrochemical Microsensors for Ascorbic Acid Detection: Clinical, Pharmaceutical, and Food Safety Applications. Micromachines 14 (2023) 41. https://doi.org/10.3390/mi14010041

B. Hatamluyi, R. Sadeghian, T.S.S. Belin, I. Alipourfard, M. Rezayi. Dual-signaling electrochemical ratiometric strategy for simultaneous quantification of anticancer drugs. Talanta 234 (2021) 122662. https://doi.org/10.1016/j.talanta.2021.122662

S. Wang, S. Fu, H. Ding. Determination of 5-Fluorouracil Using Disposable Gold Nanoparticles Modified Screen-Printed Electrode. Sensor Letters 10 (2012) 974-978. http://dx.doi.org/10.1166/sl.2012.2341

D.K. Zeybek, B. Demir, B. Zeybek, Ş. Pekyardımcı. A sensitive electrochemical DNA biosensor for antineoplastic drug 5-fluorouracil based on glassy carbon electrode modified with poly(bromo-cresolpurple). Talanta 144 (2015) 793-800. http://dx.doi.org/10.1016/j.talanta.2015.06.077

A.F. Shojaeia, K. Tabatabaeiana, S. Shakerib, F. Karim. A novel 5-fluorouracile anticancer drug sensor based on ZnFe2O4 magnetic nanoparticles ionic liquids carbon paste electrode. Sensors and Actuators B 230 (2016) 607-614. http://dx.doi.org/10.1016/j.snb.2016.02.082

F.M. Zahed, B. Hatamluyi, F. Lorestani, Z. Es’haghi. Silver nanoparticles decorated polyaniline nanocomposite basedelectrochemical sensor for the determination of anticancer drug 5-fluorouracil. Journal of Pharmaceutical and Biomedical Analysis 161 (2018) 12-19. https://doi.org/10.1016/j.jpba.2018.08.004

B. Hatamluyi, Z. Es'haghi, F. M. Zahed, M. Darroudi. A novel electrochemical sensor based on GQDs-PANI/ZnO-NCs modified glassy carbon electrode for simultaneous determination of Irinotecan and 5-Fluorouracil in biological samples. Sensors & Actuators: B. Chemical 286 (2019) 540-549. https://doi.org/10.1016/j.snb.2019.02.017

P. M. Jahani, M. Jafari, F. N. Ravari. CuFe2O4 nanoparticles-based electrochemical sensor for sensitive determination of the anticancer drug 5-fluorouracil. ADMET and DMPK (2023) https://doi.org/10.5599/admet.1691

P. Mavromatis, K. Stampouli, A. Vliora, A. Mayilyan, V. Samanidou, M. Touraki. Development of an HPLC-DAD Method for the Extraction and Quantification of 5-Fluorouracil, Uracil, and 5 Fluoro-deoxyuridin Monophosphate in Cells and Culture Media of Lactococcus lactis. Separations 9 (2022) 376. https://doi.org/10.3390/separations9110376

J. E. Knikman, H. Rosing, H-J Guchelaar, A. Cats, J. H. Beijnen. A review of the bioanalytical methods for the quantitative determination of capecitabine and its metabolites in biological matrices. Biomedical Chromatography 34 (2020) e4732. https://doi.org/10.1002/bmc.4732

Downloads

Published

19-04-2023 — Updated on 04-06-2023

How to Cite

Dodevska, T., Hadzhiev, D., & Shterev, I. (2023). Recent advances in electrochemical determination of anticancer drug 5-fluorouracil . ADMET and DMPK, 11(2), 135–150. https://doi.org/10.5599/admet.1711

Issue

Section

Reviews

Similar Articles

You may also start an advanced similarity search for this article.