Recent advances in nanomaterials-based electrochemical sensors for tramadol analysis

Authors

  • Farideh Mousazadeh Department of Chemistry, Payame Noor University, Tehran, Iran https://orcid.org/0000-0002-7119-4741
  • Yar-Mohammad Baghelani Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, Iran
  • Shamsi Rahimi Department of Chemistry, Payame Noor University, Tehran, Iran

DOI:

https://doi.org/10.5599/admet.1593

Keywords:

Tramadol, analytical procedures, nanomaterials, electrochemical sensors
electrochemical tramadol analysis

Abstract

Tramadol is a centrally-acting analgesic used for treating moderate to severe acute and chronic pain. Pain is an unpleasant sensation that occurs most commonly as a result of tissue injury. Tramadol possesses agonist actions at the μ-opioid receptor and effects reuptake at the noradrenergic and serotonergic systems. In the last years, several analytical procedures have been published in the literature for the determination of tramadol from pharmaceutical formulations and biological matrices. Electrochemical methods have attracted tremendous attention for the quantification of this drug owing to their demonstrated potential for quick response, real-time measurements, elevated selectivity and sensitivity. In this review, we highlighted the recent advances and applications of nanomaterials-based electrochemical sensors for the analysis and detection of tramadol, which is extremely important for the indication of effective diagnoses and for quality control analyses in order to protect human health. Also, the main challenges in developing nanomaterials-based electrochemical sensors for the determination of tramadol will be discussed. At last, this review offers prospects for the future research and development needed for modified electrode sensing technology for the detection of tramadol.

Downloads

Download data is not yet available.

References

A. Cetinkaya, S.I. Kaya, G. Ozcelikay, F. Budak, S.A. Ozkan. Carbon Nanomaterials-Based Novel Hybrid Platforms for Electrochemical Sensor Applications in Drug Analysis. Critical Reviews in Analytical Chemistry (2022). https://doi.org/10.1080/10408347.2022.2109125.

M. Subedi, S. Bajaj, M.S. Kumar, Y.C. Mayur. An overview of tramadol and its usage in pain management and future perspective. Biomedicine & Pharmacotherapy 111 (2019) 443-451. https://doi.org/10.1016/j.biopha.2018.12.085.

M. Karbakhsh, Z.N. Salehian. Acute opiate overdose in Tehran: the forgotten role of opium. Addictive Behaviors 32 (2007) 1835-1842. https://doi.org/10.1016/j.addbeh.2006.12.014.

E.R. Zaaijer, J. Bruijel, P. Blanken, V. Hendriks, M.W. J. Koeter, M.J. Kreek. Personality as a risk factor for illicit opioid use and a protective factor for illicit opioid dependence. Drug and Alcohol Dependence 145 (2014) 101-105. https://doi.org/10.1016/j.drugalcdep.2014.09.783.

A.M. Drewes, R.D. Jensen, L.M. Nielsen, J. Droney, L.L. Christrup, L. Arendt‐Nielsen, A. Dahan. Differences between opioids: pharmacological, experimental, clinical and economical perspectives. British Journal of Clinical Pharmacology 75 (2013) 60-78. https://doi.org/10.1111/j.1365-2125.2012.04317.x.

T. Threlkeld, T.V. Parran Jr, C.A. Adelman, S.F. Grey, Y. Yu. Tramadol versus buprenorphine for the management of acute heroin withdrawal: a retrospective matched cohort controlled study. The American Journal on Addictions 15 (2006) 186-191. https://doi.org/10.1080/10550490500528712.

K. Shah, B. Stout, H. Caskey. Tramadol for the Management of Opioid Withdrawal: A Systematic Review of Randomized Clinical Trials. Cureus (2020). https://doi.org/10.7759/cureus.9128

L.P. Kenzie, R.J. Donald, T. Margaret. Abuse potential and pharmacological comparison of tramadol and morphine. Drug and Alcohol Dependence 27 (1991) 7-17. https://doi.org/10.1016/0376-8716(91)90081-9.

S. Koncz, N. Papp, N. Menczelesz, D. Pothorszki, G. Bagdy. EEG and sleep effects of tramadol suggest potential antidepressant effects with different mechanisms of action. Pharmaceuticals 14 (2021) 431. https://doi.org/10.3390/ph14050431.

J. Kozak, K. Tyszczuk-Rotko, M. Wójciak, I. Sowa. Electrochemically Activated Screen-Printed Carbon Sensor Modified with Anionic Surfactant (aSPCE/SDS) for Simultaneous Determination of Paracetamol, Diclofenac and Tramadol. Materials 14 (2021) 3581. https://doi.org/10.3390/ma14133581.

E.S. Williams, B.W. Brooks. Human health risk assessment for pharmaceuticals in the environment: existing practice, uncertainty, and future directions. Human Pharmaceuticals in the

Environment 4 (2012) 167-224. https://doi.org/10.1007/978-1-4614-3473-3_8.

Y. Davoudabadi Farahani, V. Safari Fard. An amine/imine functionalized microporous MOF as a new fluorescent probe exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions. Journal of Applied Organometallic Chemistry 2 (2022) 180-194. https://doi.org/10.22034/jaoc.2022.154981.

R.T. Hussain, A.S. Islam, M. Khairuddean, F.B.M. Suah. A polypyrrole/GO/ZnO nanocomposite modified pencil graphite electrode for the determination of andrographolide in aqueous samples. Alexandria Engineering Journal 61 (2022) 4209-4218. https://doi.org/10.1016/j.aej.2021.09.040.

J.F. Rontani. Use of Gas Chromatography-Mass Spectrometry Techniques (GC-MS, GC-MS/MS and GC-QTOF) for the Characterization of Photooxidation and Autoxidation Products of Lipids of Autotrophic Organisms in Environmental Samples. Molecules 27 (2022) 1629. https://doi.org/10.3390/molecules27051629.

M. Kazemipour, M. Ansari, A. Mohammadi, H. Beitollahi, R. Ahmadi, Use of adsorptive square-wave anodic stripping voltammetry at carbon paste electrode for the determination of amlodipine besylate in pharmaceutical preparations. Journal of Analytical Chemistry 64 (2009) 65-70. https://doi.org/10.1134/S1061934809010134.

H. Ahmar, M. Nejati-Yazdinejad, M. Najafi, K.S. Hasheminasab. Switchable Hydrophilicity Solvent-Based Homogenous Liquid–Liquid Microextraction (SHS-HLLME) Combined with GC-FID for the Quantification of Methadone and Tramadol. Chromatographia 81 (2018) 1063-1070. https://doi.org/10.1007/s10337-018-3528-y.

F. Xu, Q. Li, W. Wei, L. Liu, H. Li. Development of a Liquid–Liquid Microextraction Method Based on a Switchable Hydrophilicity Solvent for the Simultaneous Determination of 11 Drugs in Urine by GC–MS. Chromatographia 81 (2018) 1695-1703. https://doi.org/10.1007/s10337-018-3643-9.

H. Yu, M. Choi, J.H. Jang, B. Park, Y.H. Seo, C.H. Jeong, J.W. Bae, S. Lee. Development of a column-switching LC-MS/MS method of tramadol and its metabolites in hair and application to a pharmacogenetic study. Archives of Pharmacal Research 41 (2018) 554-563. https://doi.org/10.1007/s12272-018-1013-7.

H. Cornthwaite, L. Labine, J. Watterson. Semi‐ quantitative analysis of tramadol, dextromethorphan, and metabolites in decomposed skeletal tissues by ultra performance liquid chromatography quadrupole time of flight mass spectrometry. Drug Testing and Analysis 10 (2018) 961-967. https://doi.org/10.1002/dta.2327.

S. Chalavi, A.R. Fakhari, S. Nojavan. Development of a modified partial filling method in capillary electrophoresis using two chiral plugs for the simultaneous enantioseparation of chiral drugs: Comparison with mixed chiral selector capillary electrophoresis. Journal of Chromatography A 1567 (2018) 211-218. https://doi.org/10.1016/j.chroma.2018.06.052.

E. Naghdi, A.R. Fakhari. Simultaneous chiral separation of tramadol and methadone in tablets, human urine, and plasma by capillary electrophoresis using maltodextrin as the chiral selector. Chirality 30 (2018) 1161-1168. https://doi.org/10.1002/chir.23008.

Y. Hamid, M.R. Fat’Hi. A simple vortex-assisted graphene oxide nanosheets dispersive micro-solid phase extraction combined with high-performance liquid chromatography for UVVis detection of tramadol in biological samples. Separation Science and Technology 53 (2018) 1689-1697. https://doi.org/10.1080/01496395.2018.1439960.

P. Saar-Reismaa, E. Erme, M. Vaher, M. Kulp, M. Kaljurand, J. Mazina-Šinkar. In situ determination of illegal drugs in oral fluid by portable capillary electrophoresis with deep UV excited fluorescence detection. Analytical Chemistry 90 (2018) 6253-6258. https://doi.org/10.1021/acs.analchem.8b00911.

A. Yousefzadeh, J. Hassanzadeh, S.M.J. Mousavi, M. Yousefzadeh. Surface molecular imprinting and powerfully enhanced chemiluminescence emission by Cu nanoclusters/MOF composite for detection of tramadol. Sensors and Actuators B: Chemical 286 (2019) 154-162. https://doi.org/10.1016/j.snb.2019.01.155.

B. Deiminiat, G.H. Rounaghi, M.H. Arbab-Zavar. Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol–gel and multiwall carbon nanotubes for determination of tramadol. Sensors and Actuators B: Chemical 238 (2017) 651-659. https://doi.org/10.1016/j.snb.2016.07.110.

M. Miraki, H. Karimi-Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. Journal of Molecular Liquids 278 (2019) 672-676. https://doi.org/10.1016/j.molliq.2019.01.081.

H. Beitollahi, S.Z. Mohammadi, M. Safaei, S. Tajik. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: a review. Analytical Methods 12 (2020) 1547-1560. https://doi.org/10.1039/C9AY02598G.

N.H. Khand, I.M. Palabiyik, J.A. Buledi, S. Ameen, A.F. Memon, T. Ghumro, A.R. Solangi. Functional Co3O4 nanostructure-based electrochemical sensor for direct determination of ascorbic acid in pharmaceutical samples. Journal of Nanostructure in Chemistry 11 (2021) 455-468. https://doi.org/10.1007/s40097-020-00380-8.

S.A. Alavi-Tabari, M.A. Khalilzadeh, H. Karimi-Maleh. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. Journal of Electroanalytical Chemistry 811 (2018) 84-88. https://doi.org/10.1016/j.jelechem.2018.01.034.

M. Vardini, N. Abbasi, A. Kaviani, M. Ahmadi, E. Karimi. Graphite Electrode Potentiometric Sensor Modified by Surface Imprinted Silica Gel to Measure Valproic Acid. Chemical Methodologies 6 (2022) 398-408. https://doi.org/10.22034/chemm.2022.328620.1437.

E.G. Arafa Gomaa, M. Diab, A. Elsonbati, H.M. Abulenader, A. Helmy. Interaction parameters for CuCl2 plus orange G (OG) at 19.1oC using carbon classy electrode (CGE) in KCl aqueous solutions. Asian Journal of Nanoscience and Materials 5 (2022) 294-302. https://doi.org/10.26655/AJNANOMAT.2022.4.3.

M. Mazloum-Ardakani, H. Beitollahi, M.K. Amini, F. Mirkhalaf, B.F. Mirjalili, A. Akbari. Application of 2-(3,4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid. Analyst 136 (2011) 1965-1970. https://doi.org/10.1039/C0AN00823K.

N. Baig, M. Sajid, T.A. Saleh. Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends in Analytical Chemistry 111 (2019) 47-61. https://doi.org/10.1016/j.trac.2018.11.044.

H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W. Maxakato, A. Abbaspourrad. A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. New Journal of Chemistry 43 (2019) 2362-2367. https://doi.org/10.1039/C8NJ05581E.

P. Joshi, S. Mehtab, M.G.H. Zaidi, T. Tyagi, A. Bisht. Development of polyindole/tungsten carbide nanocomposite-modified electrodes for electrochemical quantification of chlorpyrifos. Journal of Nanostructure in Chemistry 10 (2020) 33-45. https://doi.org/10.1007/s40097-019-00326-9.

H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Scientific Reports 10 (2020) 11699. https://doi.org/10.1038/s41598-020-68663-2.

E. Yarali, E. Eksin, H. Torul, A. Ganguly, U. Tamer, P. Papakonstantinou, A. Erdem. Impedimetric detection of miRNA biomarkers using paper-based electrodes modified with bulk crystals or nanosheets of molybdenum disulfide. Talanta 241 (2022) 123233. https://doi.org/10.1016/j.talanta.2022.123233.

Y. Wang, X. Wu, J. Sun, C. Wang, G. Zhu, L. P. Bai, W. Zhang. Stripping voltammetric determination of cadmium and lead ions based on a bismuth oxide surface-decorated nanoporous bismuth electrode. Electrochemistry Communications 136 (2022) 107233. https://doi.org/10.1016/j.elecom.2022.107233.

V. Tallapaneni, L. Mude, D. Pamu, V.V.S.R. Karri. Formulation, characterization and in vitro evaluation of dual-drug loaded biomimetic chitosan-collagen hybrid nanocomposite scaffolds. Journal of Medicinal and Chemical Sciences 5 (2022) 1059-1074. https://doi.org/10.26655/JMCHEMSCI.2022.6.19.

M. Hasanzadeh, Z. Hasanzadeh, S. Alizadeh, M. Sayadi, M. Nasiri Nezhad, R.E. Sabzi, S. Ahmadi. Copper-nickel oxide nanofilm modified electrode for non-enzymatic determination of glucose. Journal of Electrochemical Science and Engineering 10(3) (2020) 245-255. https://doi.org/10.5599/jese.699.

M.M. Ardakani, Z. Taleat, H. Beitollahi, M. Salavati-Niasari, B.B.F. Mirjalili, N. Taghavinia. Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex–TiO2 nanoparticle modified carbon paste electrode. Journal of Electroanalytical Chemistry 624 (2008) 73-78. https://doi.org/10.1016/j.jelechem.2008.07.027.

K. Sudhakara, A. Praveen Kumar, B. Prem Kumar, A. Raghavender, S. Ravi, D. Negussa Keniec, Y. Lee. Synthesis of γ-Fe2O3 nanoparticles and catalytic activity of azide-alkyne cycloaddition reactions. Asian Journal of Nanoscience and Materials 5 (2022) 243-251. https://doi.org/10.26655/AJNANOMAT.2022.4.1.

G.K. Jayaprakash, R. Flores-Moreno, B.E.K. Swamy, K. Mohanty, P. Dhiman. Pre/post electron transfer regioselectivity at glycine modified graphene electrode interface for voltammetric sensing applications. Journal of Electrochemical Science and Engineering 12 (2022) 1001-1008. https://doi.org/¬10.5599/jese.1438.

H. Karimi-Maleh, C. Karaman, O. Karaman, F. Karimi, Y. Vasseghian, L. Fu, M. Baghayeri, J. Rouhi, P. Senthil Kumar, P.L. Show, S. Rajendran, A.L. Sanati, A. Mirabi. Nanochemistry approach for the fabrication of Fe and N co-decorated biomass-derived activated carbon frameworks: a promising oxygen reduction reaction electrocatalyst in neutral media. Journal of Nanostructure in Chemistry 12 (2022) 429-439. https://doi.org/10.1007/s40097-022-00492-3.

K. Gajanan, S.N. Tijare. Applications of nanomaterials. Materials Today: Proceedings 5 (2018) 1093-1096. https://doi.org/10.1016/j.matpr.2017.11.187.

P.K. Kalambate, J. Noiphung, N. Rodthongkum, N. Larpant, P. Thirabowonkitphithan, T. Rojanarata, W. Laiwattanapaisal. Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs. TrAC Trends in Analytical Chemistry 143 (2021) 116403. https://doi.org/10.1016/j.snb.2020.128879.

A. Lohrasbi Nejad. Electrochemical strategies for detection of diazinon. Journal of Electrochemical Science and Engineering 12(6) (2022) 1041-1059. https://doi.org/10.5599/jese.1379.

N.F. Mahmoud, O.A. Fouad, A.E. Ali, G.G. Mohamed. Potentiometric determination of the Al (III) ion in polluted water and pharmaceutical samples by a novel mesoporous copper metal–organic framework-modified carbon paste electrode. Industrial & Engineering Chemistry Research 60 (2021) 2374-2387.

R.M. Mohabis, F. Fazeli, I. Amini, V. Azizkhani. An overview of recent advances in the detection of ascorbic acid by electrochemical techniques. Journal of Electrochemical Science and Engineering 12(6) (2022) 1081-1098. https://doi.org/10.5599/jese.1561.

A.M. Attaran, S. Abdol-Manafi, M. Javanbakht, M. Enhessari. Voltammetric sensor based on Co3O4/SnO2 nanopowders for determination of diltiazem in tablets and biological fluids. Journal of Nanostructure in Chemistry 6 (2016) 121-128. https://doi.org/10.1007/s40097-015-0186-6.

Z. Mehdizadeh, S. Shahidi, A. Ghorbani-Hasan Saraei, M. Limooei, M. Bijad. Monitoring of Amaranth in Drinking Samples using Voltammetric Amplified Electroanalytical Sensor. Chemical Methodologies 6 (2022) 246-252. https://doi.org/10.22034/chemm.2022.324073.1423.

S. Tajik, M.R. Aflatoonian, H. Beitollahi, I. Sheikhshoaie, Z. Dourandish, F. Garkani-Nejad, B. Aflatoonian, M. Bamorovat. Electrocatalytic oxidation and selective voltammetric detection of methyldopa in the presence of hydrochlorothiazide in real samples. Microchemical Journal 158 (2020) 105182. https://doi.org/10.1016/j.microc.2020.105182.

K. Harismah, M. Mirzaei, M. Dai, Z. Roshandel, E. Salarrezaei. In silico investigation of nanocarbon biosensors for diagnosis of COVID-19. Eurasian Chemical Communications 3 (2021) 95-102. https://doi.org/10.22034/ecc.2021.267226.1120.

S. Parlayici, V. Eskizeybek, A. Avcı, E. Pehlivan. Removal of chromium (VI) using activated carbon-supported-functionalized carbon nanotubes. Journal of Nanostructure in Chemistry 5 (2015) 255-263. https://doi.org/10.1007/s40097-015-0156-z.

A.C. Power, B. Gorey, S. Chandra, J. Chapman. Carbon nanomaterials and their application to electro¬chemical sensors: a review. Nanotechnology Reviews 7 (2018) 19-41. https://doi.org/-10.1515/ntrev-2017-0160.

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science 306 (2004) 666-669. https://doi.org/10.1126/science.1102896.

B.A. Aragaw. Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction. Journal of Nanostructure in Chemistry 10 (2020) 9-18. https://doi.org/10.1007/s40097-019-00324-x.

J. Mohanraj, D. Durgalakshmi, R.A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. Journal of Colloid and Interface Science 566 (2020) 463-472. https://doi.org/10.1016/j.jcis.2020.01.089.

F. Ahmad, K.E. Kainat, U. Farooq. A comprehensive review on materials having high oxygen reduction reaction (ORR) activity. Journal of Chemical Reviews. 4 (2022) 374-422. https://doi.org/10.22034/jcr. 2022.357844.1185.

M.J. Allen, V.C. Tung, R.B. Kaner. Honeycomb carbon: a review of graphene. Chemical Reviews 110 (2009) 132–145. https://doi.org/10.1021/cr900070d.

A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian. Preparation of NiFe2O4/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen. Analytica Chimica Acta 831 (2014) 50-59. https://doi.org/10.1016/j.aca.2014.04.061.

J. Manokaran, J. Narendranath, R. Muruganantham, N. Balasubramanian. Nitrogen doped graphene supported Pt-Pd nanoparticle modified GC electrode for electrochemical determination of tramadol and paracetamol. Indian Journal of Chemistry 56A (2017) 63-68.

M.A. Mohamed, S.A. Atty, N.N. Salama, C.E. Banks. Highly selective sensing platform utilizing graphene oxide and multiwalled carbon nanotubes for the sensitive determination of tramadol in the presence of co‐formulated drugs. Electroanalysis 29 (2017) 1038-1048. https://doi.org/10.1002/elan.201600668.

N. Rokhsefid, M.R. Shishehbore. Synthesis and characterization of an Au nanoparticles/graphene nanosheet nanocomposite and its application for the simultaneous determination of tramadol and acetaminophen. Analytical Methods 11 (2019) 5150-5159. https://doi.org/10.1039/C9AY01497G.

F. Hosseini, M. Bahmaei, M. Davallo. A Sensitive Method for the Electrochemical Determination of Tramadol, Codeine and Caffeine by A CeO2-SnO2/rGO Nanocomposite-Modified Glassy Carbon Electrode. Analytical and Bioanalytical Electrochemistry 13 (2021) 264-282.

J. Saichanapan, K. Promsuwan, K. Saisahas, A. Soleh, K.H. Chang, A.F.L. Abdullah, W. Limbut. Voltam¬metric Determination of Tramadol Using a Hierarchical Graphene Oxide Nanoplatelets Modified Electrode. Journal of The Electrochemical Society 168 (2021) 117512. https://doi.org/10.1149/19457111/ac3529.

L.S. Porto, D.N. Silva, A.E.F. de Oliveira, A.C. Pereira, K.B. Borges. Carbon nanomaterials: Synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest. Reviews in Analytical Chemistry 38 (2019). https://doi.org/10.1515/revac-2019-0017.

V. Schroeder, S. Savagatrup, M. He, S. Lin, T. M. Swager. Carbon nanotube chemical sensors. Chemical Reviews 119 (2019) 599–663. https://doi.org/10.1021/acs.chemrev.8b00340.

H. Song, X. Zhang, Y. Liu, Z. Su. Developing graphene-based nanohybrids for electrochemical sensing. Chemical Record 19 (2019) 534–549. https://doi.org/10.1002/tcr.201800084.

H. Karimi-Maleh, A.F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri, R. Moradi. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosensors and Bioelectronics 86 (2016) 879-884. https://doi.org/10.1016/j.bios.¬2016.07.086.

I. Raeisi, P. Derakhshi, P. Aberoomsand Azar, M. Saber Tehrani. Desulfurization of gas condensate under visible light using synthesized photocatalysts of Mn/TiO2/MWCNTs and Ni/TiO2/MWCNTs. Journal of Nanostructure in Chemistry 11 (2021) 165-185. https://doi.org/10.1007/s40097-020-00349-7.

A. Hosseini Fakhrabad, R. Sanavi Khoshnood, M.R. Abedi, M. Ebrahimi. Fabrication a composite carbon paste electrodes (CPEs) modified with multi-wall carbon nanotubes (MWCNTs/N, N-Bis (salicyliden)-1,3-propandiamine) for determination of lanthanum (III). Eurasian Chemical Communications 3 (2021) 627-634. http://doi.org/10.22034/ecc.2021.288271.1182.

S. Tajik, M.A. Taher, H. Beitollahi. Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode. Sensors and Actuators B: Chemical 188 (2013) 923-930. https://doi.org/10.1016/j.snb.2013.07.085.

S. Wang, M. Pan, K. Liu, X. Xie, J. Yang, L. Hong, S. Wang. A SiO2@ MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate. Food Chemistry 381 (2022) 132225. https://doi.org/10.1016/j.foodchem.2022.132225.

A. Babaei, A.R. Taheri, M. Afrasiabi. A multi-walled carbon nanotube-modified glassy carbon electrode as a new sensor for the sensitive simultaneous determination of paracetamol and tramadol in pharmaceutical preparations and biological fluids. Journal of the Brazilian Chemical Society 22 (2011) 1549-1558. https://doi.org/10.1590/S0103-50532011000800020.

S. Branch. A sensor for determination of tramadol in pharmaceutical preparations and biological fluids based on multi-walled carbon nanotubes-modified glassy carbon electrode. Journal of the Chemical Society of Pakistan 35 (2013) 1106.

N.F. Atta, R.A. Ahmed, H.M. Amin, A. Galal. Monodispersed gold nanoparticles decorated carbon nanotubes as an enhanced sensing platform for nanomolar detection of tramadol. Electroanalysis 24 (2012) 2135-2146. https://doi.org/10.1002/elan.201200344.

F. Hosseini, M. Ebrahimi, H. Karimi-Maleh. An amplified sensor based on improved carbon paste electrode with 1, 3-Dipropylimidazolium Bromide and MgO/SWCNTs Nanocomposite for tradamol determination. International Journal of Electrochemical Science 13 (2018) 4923-4932.

M.M. Foroughi, S. Jahani, H.H. Nadiki. Lanthanum doped fern-like CuO nanoleaves/MWCNTs modified glassy carbon electrode for simultaneous determination of tramadol and acetaminophen. Sensors and Actuators B: Chemical 285 (2019) 562-570. https://doi.org/10.1016/j.snb.2019.01.069.

N.F. Atta, A. Galal, S.H. Hassan. Ultrasensitive determination of nalbuphine and tramadol narcotic analgesic drugs for postoperative pain relief using nano-cobalt oxide/ionic liquid crystal/carbon nanotubes-based electrochemical sensor. Journal of Electroanalytical Chemistry 839 (2019) 48-58. https://doi.org/10.1016/j.jelechem.2019.03.002.

E. Çidem, T. Teker, M. Aslanoglu. A sensitive determination of tramadol using a voltammetric platform based on antimony oxide nanoparticles. Microchemical Journal 147 (2019) 879-885. https://doi.org/10.¬1016/¬j.microc.2019.04.018.

T. Tavana, A.R. Rezvani, H. Karimi-Maleh. Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: An excellent, powerful electrocatalyst for the fabrication of electrochemical sensor to determine nalbuphine in the presence of tramadol as two opioid analgesic drugs. Journal of Pharmaceutical and Biomedical Analysis 189 (2020) 113397. https://doi.org/10.1016/j.jpba. 2020.113397.

C. Ricardo Teixeira Tarley, J. de Cássia Mendonça, L. Rianne da Rocha, T. Boareto Capelari, M. Carolyne Prete, M. Cecílio Fonseca, M. Gava Segatelli. Development of a molecularly imprinted poly (acrylic acid)‐MWCNT nanocomposite electrochemical sensor for tramadol determination in pharmaceutical samples. Electroanalysis 32 (2020) 1130-1137. https://doi.org/10.1002/elan.201900148.

S. Kolahi-Ahari, B. Deiminiat, G.H. Rounaghi. Modification of a pencil graphite electrode with multi-walled carbon nanotubes capped gold nanoparticles for electrochemical determination of tramadol. Journal of Electroanalytical Chemistry 862 (2020) 113996. https://doi.org/10.1016/j.jelechem. 2020.113996.

Q. Li, H. Wang. Fabrication of an electrochemical sensor based on a nanocomposite of CoO@f-CNTs for determination of tramadol narcotic drug in urine of athlete volunteers. International Journal of Electrochemical Science 17 (2022) 2.

C.H. Choi, S.H. Park, S.I. Woo. Green Chemistry Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions. Green Chemistry 13 (2011) 406e412. https://doi.org/10.1039/c0gc00384k.

J. Liu, H. Wang, M. Antonietti. Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chemical Society Reviews 45 (2016) 2308-2326. https://doi.org/10.1039/c5cs00767d.

S.C. Yan, Z.S. Li, Z. G. Zou. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25 (2009) 10397-10401. https:// doi.org/10.1021/la900923z.

H. Karimi-Maleh, R. Darabi, M. Shabani-Nooshabadi, M. Baghayeri, F. Karimi, J. Rouhi, C. Karaman. Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food and Chemical Toxicology 162 (2022) 112907. https://doi.org/10.1016/j.fct.2022.112907.

M. Hassannezhad, M. Hosseini, M.R. Ganjali, M. Arvand. A graphitic carbon nitride (gC3N4/Fe3O4) nanocomposite: an efficient electrode material for the electrochemical determination of tramadol in human biological fluids. Analytical Methods 11 (2019) 2064-2071. https://doi.org/10.1039/C9AY00146H.

A. John, L. Benny, A.R. Cherian, S.Y. Narahari, A. Varghese, G. Hegde. Electrochemical sensors using con¬ducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes. Journal of Nanostructure in Chemistry 11 (2021) 1-31. https://doi.org/10.1007/s40097-02000372-8.

I.F.A. Karm, A.S. Dwaish, O.A.A. Dakhil. Algae extracts as reduction agents for biosynthesis of silver nanoparticles for alternative medicinal compounds. Eurasian Chemical Communications 4 (2022) 910-920. https://doi.org/10.22034/ecc.2022.337634.1409

S. Amin, A. Hameed, N. Memon, A.R. Solangi, M. Aslam, M.T. Soomro. The efficacy of the Nafion® blended CTAB protected Au nanoparticles for the electrochemical detection of tramadol in wastewater: A parametric investigation. Journal of Environmental Chemical Engineering 4 (2016) 3825-3834. https://doi.org/10.1016/j.jece.2016.08.010.

Z. Hassanvand, F. Jalali. Gold nanoparticles/cysteic acid modified electrode for simultaneous electrochemical determination of tramadol and paracetamol. Analytical and Bioanalytical Chemistry Research 6 (2019) 393-404. https://doi.org/10.22036/abcr.2019.170247.1305.

A. Hojjati-Najafabadi, S. Salmanpour, F. Sen, P. N. Asrami, M. Mahdavian, M.A. Khalilzadeh. A tramadol drug electrochemical sensor amplified by biosynthesized Au nanoparticle using mentha aquatic extract and ionic liquid. Topics in Catalysis 65 (2022) 587-594. https://doi.org/10.1007/s11244-021-01498-x.

F.S. Yardımcı, S. Mehmet, A. Baykal. Amperometric hydrogen peroxide biosensor based on cobalt ferrite–chitosan nanocomposite. Materials Science and Engineering: C 32 (2012) 269–275. https://doi.org/¬10.1016/j.msec.2011.10.028.

R. Devi, S. Yadav, R. Nehra, S. Yadav, C.S. Pundir. Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. Journal of Food Engineering 115 (2013) 207–214. https://doi.org/10.1016/j.jfoodeng.2012.10.014.

F. Wang, S. Hu. Electrochemical sensors based on metal and semiconductor nanoparticles. Microchimica Acta 165 (2009) 1-22.‏ https://doi.org/10.1007/s00604-009-0136-4.

T. Madrakian, S. Alizadeh, M. Bahram, A. Afkhami. A novel electrochemical sensor based on magneto LDH/Fe3O4 nanoparticles@ glassy carbon electrode for voltammetric determination of tramadol in real samples. Ionics 23 (2017) 1005-1015. https://doi.org/10.1007/s11581-016-1871-2.

S.A. Memon, D. Hassan, J.A. Buledi, A.R. Solangi, S.Q. Memon, I.M. Palabiyik. Plant material protected cobalt oxide nanoparticles: sensitive electrocatalyst for tramadol detection. Microchemical Journal 159 (2020) 105480. https://doi.org/10.1016/j.microc.2020.105480.

V. Arabali, S. Malekmohammadi, F. Karimi. Surface amplification of pencil graphite electrode using CuO nanoparticle/polypyrrole nanocomposite; a powerful electrochemical strategy for determination of tramadol. Microchemical Journal 158 (2020) 105179. https://doi.org/10.1016/j.microc.2020.105179.

M. Khairy, C.E. Banks. A screen-printed electrochemical sensing platform surface modified with nanostructured ytterbium oxide nanoplates facilitating the electroanalytical sensing of the analgesic drugs acetaminophen and tramadol. Microchimica Acta 187 (2020) 126. https://doi.org/10.1007/-s00604-020-4118-x.

A. Vazirirad, A. Babaei, M. Afrasiabi. SnO2/α-Fe2O3 Hierarchical Nanorods Modified Carbon Paste Electrode as the Novel Sensor for Sensitive Simultaneous Determination of Dopamine and Tramadol. Analytical and Bioanalytical Electrochemistry 13 (2021) 393-407.

Downloads

Published

16-04-2023 — Updated on 03-06-2023

How to Cite

Mousazadeh, F., Baghelani, Y.-M., & Rahimi, S. (2023). Recent advances in nanomaterials-based electrochemical sensors for tramadol analysis. ADMET and DMPK, 11(2), 117–134. https://doi.org/10.5599/admet.1593

Issue

Section

Reviews