Advances in electrochemical biosensors employing carbon-based electrodes for detection of biomarkers in diabetes mellitus

Authors

  • Serly Zuliska Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia https://orcid.org/0009-0007-1256-0821
  • Iman Permana Maksum Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia https://orcid.org/0000-0001-8166-8421
  • Yasuaki Einaga Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan https://orcid.org/0000-0001-7057-4358
  • Grandprix Thomreys Marth Kadja Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia https://orcid.org/0000-0003-0264-2739
  • Irkham Irkham Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia https://orcid.org/0000-0001-9938-2931

DOI:

https://doi.org/10.5599/admet.2361

Keywords:

Diabetes mellitus, Biomarker, Electrochemical detection, Biosensor, carbon electrodes, point-of-care
Graphical Abstract

Abstract

Background and purpose: The increase in diabetes cases has become a major concern in the healthcare sector, necessitating the development of efficient and minimal diagnostic methods. This study aims to provide a comprehensive examination of electrochemical biosensors for detecting diabetes mellitus biomarkers, with a special focus on the utilization of carbon-based electrodes. Review approach: A detailed analysis of electrochemical biosensors incorporating various carbon electrodes, including screen-printed carbon electrodes, glassy carbon electrodes, and carbon paste electrodes, is presented. The advantages of carbon-based electrodes in biosensor design are highlighted. The review covers the detection of several key diabetes biomarkers, such as glucose, glycated hemoglobin (HbA1c), glycated human serum albumin (GHSA), insulin, and novel biomarkers. Key results: Recent developments in electrochemical biosensor technology over the last decade are summarized, emphasizing their potential in clinical applications, particularly in point-of-care settings. The utilization of carbon-based electrodes in biosensors is shown to offer significant advantages, including enhanced sensitivity, selectivity, and cost-effectiveness. Conclusion: This review underscores the importance of carbon-based electrodes in the design of electrochemical biosensors and raises awareness for the detection of novel biomarkers for more specific and personalized diabetes mellitus cases. The advancements in this field highlight the potential of these biosensors in future clinical applications, especially in point-of-care diagnostics.

Downloads

Download data is not yet available.

References

A.I. Adler, I.M. Stratton, H.A.W. Neil, J.S. Yudkin, D.R. Matthews, C.A. Cull, A.D. Wright, R.C. Turner, R.R. Holman. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): Prospective observational study. British Medical Journal 321 (2000) 412-419. https://doi.org/10.1136/bmj.321.7258.412

American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care 45 (2022) S17-S38. https://doi.org/10.2337/dc22-S002

International Diabetes Federation, "Federation. International Diabetes Federation (IDF) Atlas 10th Edition", https://diabetesatlas.org/atlas/tenth-edition/ (Accessed February 21, 2024).

A. Ahmad, M. Imran, H. Ahsan. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 15 (2023) 1630. https://doi.org/10.3390/pharmaceutics15061630

B. Dorcely, K. Katz, R. Jagannathan, S.S. Chiang, B. Oluwadare, I.J. Goldberg, M. Bergman. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes, Metabolic Syndrome and Obesity 10 (2017) 345-361. https://doi.org/10.2147/DMSO.S100074

G. Altawallbeh, V.F. Makky, A.K. Saenger, J.M. Peters, A.A. Killeen. Evaluation of an Ion-Exchange HPLC Device for HbA1c Measurement. Journal of Applied Laboratory Medicine 5 (2020) 695-703. https://doi.org/10.1093/jalm/jfaa042

M.Z. Chaila, M. Viniegra, J.J. Gagliardino, A. Martínez, M.G. Simesen de Bielke, M. Frusti, L. Monaco, P. Salgado, C. Buso, C.D. Gonzalez, V.F. Commendatore. Glycated Hemoglobin Measurement: Comparison of Three Methods Versus High Performance Liquid Chromatography. Journal of Diabetes Science and Technology 16 (2022) 724-731. https://doi.org/10.1177/1932296821997179

K. Słowinska-Solnica, D. Pawlica-Gosiewska, K. Gawlik, M. Kuźniewski, B. Maziarz, B. Solnica. Boronate affinity chromatography accurately measures HbA1c also in patients with end-stage renal disease - Performance evaluation of the A1c HPLC analyzer. Clinical Laboratory 64 (2018) 1451-1455. https://doi.org/10.7754/Clin.Lab.2018.180311

B. Erol, K. Erol, E. Gökmeşe. The effect of the chelator characteristics on insulin adsorption in immobilized metal affinity chromatography. Process Biochemistry 83 (2019) 104-113. https://doi.org/10.1016/j.procbio.2019.05.009

M. Gilani, M. Aamir, A. Akram, Z.H. Haroon, A. Ijaz, M.T. Khadim. Comparison of turbidimetric inhibition immunoassay, high-performance liquid chromatography, and capillary electrophoresis methods for glycated hemoglobin determination. Lab Medicine 51 (2020) 579-584. https://doi.org/10.1093/LABMED/LMAA010

J.D. Oliver, A.A. Rosser, C.M. Fellows, Y. Guillaneuf, J.L. Clement, M. Gaborieau, P. Castignolles. Understanding and improving direct UV detection of monosaccharides and disaccharides in free solution capillary electrophoresis. Analytica Chimica Acta 809 (2014) 183-193. https://doi.org/10.1016/j.aca.2013.12.001

G. Murtaza, A.S. Rizvi, M. Irfan, L. Li, F. Qu. Determination of glycated albumin in serum and saliva by capillary electrophoresis utilizing affinity of 3-acrylamido phenylboronic acid selected by virtual screening and molecular docking. Journal of Chromatography A 1636 (2021) 461793. https://doi.org/10.1016/j.chroma.2020.461793

K. Shimura, K.I. Kasai. Affinity probe capillary electrophoresis of insulin using a fluorescence-labeled recombinant Fab as an affinity probe. Electrophoresis 35 (2014) 840-845. https://doi.org/10.1002/elps.201300464

T. Kouzuma, T. Usami, M. Yamakoshi, M. Takahashi, S. Imamura. An enzymatic method for the measurement of glycated albumin in biological samples. Clinica Chimica Acta 324 (2002) 61-71. https://doi.org/10.1016/S0009-8981(02)00207-3

H.J. Park, S.S. Lee. A quartz crystal microbalance-based biosensor for enzymatic detection of hemoglobin A1c in whole blood. Sensors and Actuators, B: Chemical 258 (2018) 836-840. https://doi.org/10.1016/j.snb.2017.11.170

R. Lakshmy, R. Gupta. Measurement of glycated hemoglobin A1c from dried blood by turbidimetric immunoassay. Journal of Diabetes Science and Technology 3 (2009) 1203-1206. https://doi.org/10.1177/193229680900300527

M.S. Even, C.B. Sandusky, N.D. Barnard, J. Mistry, M.K. Sinha. Development of a novel ELISA for human insulin using monoclonal antibodies produced in serum-free cell culture medium. Clinical Biochemistry 40 (2007) 98-103. https://doi.org/10.1016/j.clinbiochem.2006.10.004

S. Ferri, K. Kojima, K. Sode. Review of glucose oxidases and glucose dehydrogenases: A bird’s eye view of glucose sensing enzymes. in: J. Diabetes Sci. Technol., (2011) 1068-1076. https://doi.org/10.1177/193229681100500507

D.E. Mulyani, I.P. Maksum. Detection of Biomarker Using Aptasensors to Determine the Type of Diabetes. Diagnostics 13 (2023) 2035. https://doi.org/10.3390/diagnostics13122035

P. Mehrotra. Biosensors and their applications - A review. Journal of Oral Biology and Craniofacial Research 6 (2016) 153-159. https://doi.org/10.1016/j.jobcr.2015.12.002

C. Laghlimi, A. Moutcine, M. Elamrani, A. Chtaini, J. Isaad, H. Belkhanchi, Y. Ziat. Investigation on square wave and cyclic voltammetry approaches of the Pb2+, Cd2+, Co2+ and Hg2+ in tap water of Beni Mellal City (Morocco). Desalination and Water Treatment 280 (2022) 251-161. https://doi.org/10.5004/dwt.2022.29023

C. Laghlimi, A. Moutcine, A. Chtaini, J. Isaad, A. Zannou, Y. Ziat, M. Ahari. Voltammetric investigation of the complexing effect of Capparis spinosa on heavy metals: Application in the treatment of water. Ionics 29 (2023) 5441-5452. https://doi.org/10.1007/s11581-023-05194-6

C. Gibi, C.H. Liu, S.C. Barton, S. Anandan, J.J. Wu. Carbon Materials for Electrochemical Sensing Application - A Mini Review. Journal of the Taiwan Institute of Chemical Engineers (2023) 105071. https://doi.org/10.1016/j.jtice.2023.105071

C. Onfray, A. Thiam. Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review. Micromachines 14 (2023) 1688. https://doi.org/10.3390/mi14091688

W. Zhang, S. Zhu, R. Luque, S. Han, L. Hu, G. Xu. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews 45 (2016) 715-752. https://doi.org/10.1039/c5cs00297d

S. Tajik, H. Beitollahi, F.G. Nejad, M. Safaei, K. Zhang, Q. Van Le, R.S. Varma, H.W. Jang, M. Shokouhimehr. Developments and applications of nanomaterial-based carbon paste electrodes. RSC Advances 10 (2020) 21561-21581. https://doi.org/10.1039/d0ra03672b

S. Eissa, A.Y. Almusharraf, M. Zourob. A comparison of the performance of voltammetric aptasensors for glycated haemoglobin on different carbon nanomaterials-modified screen printed electrodes. Materials Science and Engineering C 101 (2019) 423-430. https://doi.org/10.1016/j.msec.2019.04.001

A. Fatoni, W. Widanarto, M.D. Anggraeni, D.W. Dwiasi. Glucose biosensor based on activated carbon - NiFe2O4 nanoparticles composite modified carbon paste electrode. Results in Chemistry 4 (2022) 100433. https://doi.org/10.1016/j.rechem.2022.100433

M. Amouzadeh Tabrizi, M. Shamsipur, R. Saber, S. Sarkar, M. Besharati. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1,3,6,8-pyrenetetrasulfonate. Microchimica Acta 185 (2018) 1-7. https://doi.org/10.1007/s00604-017-2570-z

Y. Wang, Y. Liu, F. Zou, C. Jiang, C. Mou, T. Wang. Humidity sensor based on a long-period fiber grating coated with polymer composite film. Sensors (Switzerland) 19 (2019) 2263. https://doi.org/10.3390/s19102263

B. Ajitha, Y.A. Kumar Reddy, P.S. Reddy, H.J. Jeon, C.W. Ahn. Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Advances 6 (2016) 36171-36179. https://doi.org/10.1039/c6ra03766f

A.K. Sari, Y.W. Hartati, S. Gaffar, I. Anshori, D. Hidayat, H.L. Wiraswati. The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP. Journal of Electrochemical Science and Engineering 12 (2022) 219-235. https://doi.org/10.5599/jese.1206

F. Ahmad, M.M. Salem-Bekhit, F. Khan, S. Alshehri, A. Khan, M.M. Ghoneim, H.F. Wu, E.I. Taha, I. Elbagory. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Nanomaterials 12 (2022) 1333. https://doi.org/10.3390/nano12081333

E.C. Wilkirson, K.L. Singampalli, J. Li, D.D. Dixit, X. Jiang, D.H. Gonzalez, P.B. Lillehoj. Affinity-based electrochemical sensors for biomolecular detection in whole blood. Analytical and Bioanalytical Chemistry 415 (2023) 3983-4002. https://doi.org/10.1007/s00216-023-04627-5

M. Tertis, O. Hosu, B. Feier, A. Cernat, A. Florea, C. Cristea. Electrochemical peptide-based sensors for foodborne pathogens detection. Molecules 26 (2021) 3200. https://doi.org/10.3390/molecules26113200

C. Laghlimi, A. Moutcine, A. Chtaini, J. Isaad, A. Soufi, Y. Ziat, H. Amhamdi, H. Belkhanchi. Recent advances in electrochemical sensors and biosensors for monitoring drugs and metabolites in pharmaceutical and biological samples. ADMET and DMPK 11 (2023) 151-173. https://doi.org/10.5599/admet.1709

J. Hovancová, I. Šišoláková, R. Oriňaková, A. Oriňak. Nanomaterial-based electrochemical sensors for detection of glucose and insulin. Journal of Solid State Electrochemistry 21 (2017) 2147-2166. https://doi.org/10.1007/s10008-017-3544-0

V. Pavla, P. Miroslav. The latest trends in the design of electrochemical biosensors for the diagnosis and monitoring of diabetes mellitus. Bratislava Medical Journal 123 (2022) 618-624. https://doi.org/10.4149/BLL_2022_099

S. Yazdanpanah, M. Rabiee, M. Tahriri, M. Abdolrahim, L. Tayebi. Glycated hemoglobin-detection methods based on electrochemical biosensors. TrAC - Trends in Analytical Chemistry 72 (2015) 53-67. https://doi.org/10.1016/j.trac.2015.03.019

A. Rescalli, E.M. Varoni, F. Cellesi, P. Cerveri. Analytical Challenges in Diabetes Management: Towards Glycated Albumin Point-of-Care Detection. Biosensors 12 (2022) 687. https://doi.org/10.3390/bios12090687

C. Sabu, T.K. Henna, V.R. Raphey, K.P. Nivitha, K. Pramod. Advanced biosensors for glucose and insulin. Biosensors and Bioelectronics 141 (2019) 111201. https://doi.org/10.1016/j.bios.2019.03.034

M.A. Abdul-Ghani, D. Tripathy, R.A. DeFronzo. Contributions of β-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 29 (2006) 1130-1139. https://doi.org/10.2337/dc05-2179

M. Nishi, K. Nanjo. Insulin gene mutations and diabetes. Journal of Diabetes Investigation 2 (2011) 92-100. https://doi.org/10.1111/j.2040-1124.2011.00100.x

U. Galicia-Garcia, A. Benito-Vicente, S. Jebari, A. Larrea-Sebal, H. Siddiqi, K.B. Uribe, H. Ostolaza, C. Martín. Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences 21 (2020) 6275. https://doi.org/10.3390/ijms21176275

M. Ortiz-Martínez, M. González-González, A.J. Martagón, V. Hlavinka, R.C. Willson, M. Rito-Palomares. Recent Developments in Biomarkers for Diagnosis and Screening of Type 2 Diabetes Mellitus. Current Diabetes Reports 22 (2022) 95-115. https://doi.org/10.1007/s11892-022-01453-4

Z. Zhu, L. Garcia-Gancedo, A.J. Flewitt, H. Xie, F. Moussy, W.I. Milne. A critical review of Glucose biosensors based on Carbon nanomaterials: Carbon nanotubes and graphene. Sensors (Switzerland) 12 (2012) 5996-6022. https://doi.org/10.3390/s120505996

E.H. Yoo, S.Y. Lee. Glucose biosensors: An overview of use in clinical practice. Sensors 10 (2010) 4558-4576. https://doi.org/10.3390/s100504558

N. Wongkaew, M. Simsek, C. Griesche, A.J. Baeumner. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chemical Reviews 119 (2019) 120-194. https://doi.org/10.1021/acs.chemrev.8b00172

X. Liu, D. Huang, C. Lai, L. Qin, G. Zeng, P. Xu, B. Li, H. Yi, M. Zhang. Peroxidase-Like Activity of Smart Nanomaterials and Their Advanced Application in Colorimetric Glucose Biosensors. Small 15 (2019) 1900133. https://doi.org/10.1002/smll.201900133

W. Liu, F. Ding, Y. Sun. Characterization of phenosafranine-hemoglobin interactions in aqueous solution. Journal of Solution Chemistry 40 (2011) 231-246. https://doi.org/10.1007/s10953-010-9647-1

A.J. Marengo-Rowe. Structure-Function Relations of Human Hemoglobins. Baylor University Medical Center Proceedings 19 (2006) 239-245. https://doi.org/10.1080/08998280.2006.11928171

S.I. Sherwani, H.A. Khan, A. Ekhzaimy, A. Masood, M.K. Sakharkar. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomarker Insights 11 (2016) 95-104. https://doi.org/10.4137/Bmi.s38440

J.Y. Park, B.Y. Chang, H. Nam, S.M. Park. Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes. Analytical Chemistry 80 (2008) 8035-8044. https://doi.org/10.1021/ac8010439

P.K. Mandali, A. Prabakaran, K. Annadurai, U.M. Krishnan. Trends in Quantification of HbA1c Using Electrochemical and Point-of-Care Analyzers. Sensors 23 (2023) 1901. https://doi.org/10.3390/s23041901

E. Lenters-Westra, R.K. Schindhelm, H.J. Bilo, R.J. Slingerland. Haemoglobin A1c: Historical overview and current concepts. Diabetes Research and Clinical Practice 99 (2013) 75-84. https://doi.org/10.1016/j.diabres.2012.10.007

G. Nordin, R. Dybkær. Recommendation for term and measurement unit for “HbA1c.” Clinical Chemistry and Laboratory Medicine 45 (2007) 1081-1082. https://doi.org/10.1515/CCLM.2007.245

D.B. Sacks. Measurement of hemoglobin A1c: A new twist on the path to harmony. Diabetes Care 35 (2012) 2674-2680. https://doi.org/10.2337/dc12-1348

H.A. Khan, M.S. Ola, A.S. Alhomida, S.H. Sobki, S.A. Khan. Evaluation of HbA1c criteria for diagnosis of diabetes mellitus: A retrospective study of 12785 type 2 Saudi male patients. Endocrine Research 39 (2014) 62-66. https://doi.org/10.3109/07435800.2013.828740

J. Chen, D. Yin, K. Dou. Intensified glycemic control by HbA1c for patients with coronary heart disease and Type 2 diabetes: a review of findings and conclusions. Cardiovascular Diabetology 22 (2023) 1-16. https://doi.org/10.1186/s12933-023-01875-8

M. Inaba, S. Okuno, Y. Kumeda, S. Yamada, Y. Imanishi, T. Tabata, M. Okamura, S. Okada, T. Yamakawa, E. Ishimura, Y. Nishizawa. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: Effect of anemia and erythropoietin injection. Journal of the American Society of Nephrology 18 (2007) 896-903. https://doi.org/10.1681/ASN.2006070772

P. Rondeau, E. Bourdon. The glycation of albumin: Structural and functional impacts. Biochimie 93 (2011) 645-658. https://doi.org/10.1016/j.biochi.2010.12.003

T.W. Evans. Review article: Albumin as a drug - Biological effects of albumin unrelated to oncotic pressure. Alimentary Pharmacology and Therapeutics, Supplement 16 (2002) 6-11. https://doi.org/10.1046/j.1365-2036.16.s5.2.x

R. Tavares Ribeiro, M. Paula Macedo, J. Filipe Raposo. HbA1c, Fructosamine, and Glycated Albumin in the Detection of Dysglycaemic Conditions. Current Diabetes Reviews 12 (2015) 14-19. https://doi.org/10.2174/1573399811666150701143112

Y. Ueda, H. Matsumoto. Recent topics in chemical and clinical research on glycated albumin. in: J. Diabetes Sci. Technol., (2015) 177-182. https://doi.org/10.1177/1932296814567225

J. Anguizola, R. Matsuda, O.S. Barnaby, K.S. Hoy, C. Wa, E. DeBolt, M. Koke, D.S. Hage. Review: Glycation of human serum albumin. Clinica Chimica Acta 425 (2013) 64-76. https://doi.org/10.1016/j.cca.2013.07.013

A.E. Sumner, M.T. Duong, P.C. Aldana, M. Ricks, M.K. Tulloch-Reid, J.N. Lozier, S.T. Chung, D.B. Sacks. A1C combined with glycated albumin improves detection of prediabetes in Africans: The Africans in America study. Diabetes Care 39 (2016) 271-277. https://doi.org/10.2337/dc15-1699

J.H. Huh, K.J. Kim, B.W. Lee, D.W. Kim, E.S. Kang, B.S. Cha, H.C. Lee. The relationship between BMI and glycated albumin to glycated hemoglobin (GA/A1c) ratio according to glucose tolerance status. PLoS ONE 9 (2014) e89478. https://doi.org/10.1371/journal.pone.0089478

S. Fargion, P. Dongiovanni, A. Guzzo, S. Colombo, L. Valenti, A.L. Fracanzani. Iron and insulin resistance. Alimentary Pharmacology and Therapeutics, Supplement 22 (2005) 61-63. https://doi.org/10.1111/j.1365-2036.2005.02599.x

N. Amini, M.B. Gholivand, M. Shamsipur. Electrocatalytic determination of traces of insulin using a novel silica nanoparticles-Nafion modified glassy carbon electrode. Journal of Electroanalytical Chemistry 714 (2014) 70-75. https://doi.org/10.1016/j.jelechem.2013.12.015

J. Shepa, I. Šišoláková, M. Vojtko, L. Trnková, G. Nagy, I. Maskaľová, A. Oriňak, R. Oriňaková. Nio nanoparticles for electrochemical insulin detection. Sensors 21 (2021) 5063. https://doi.org/10.3390/s21155063

Z. Fu, E. R. Gilbert, D. Liu. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes. Current Diabetes Reviews 9 (2012) 25-53. https://doi.org/10.2174/15733998130104

M. Liu, M.A. Weiss, A. Arunagiri, J. Yong, N. Rege, J. Sun, L. Haataja, R.J. Kaufman, P. Arvan. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, Obesity and Metabolism 20 (2018) 28-50. https://doi.org/10.1111/dom.13378

S.E. Kahn. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46 (2003) 3-19. https://doi.org/10.1007/s00125-002-1009-0

Y. Komorita, A. Shiroozu, H. Nakamura. Fibroblast growth factor 21 as a candidate of a novel serum biomarker for mitochondrial diabetes. Journal of Diabetes Investigation 14 (2023) 1009-1010. https://doi.org/10.1111/jdi.14030

D. Nelson, M. Cox. Lehninger Principles of Biochemistry, Sixth, W. H. Freeman and Company, New York, USA, 2017 (ISBN:13: 978-1-4641-0962-1 / ISBN:10:1-4292- 3414-8).

S. Andrzejewski, S.-P. Gravel, M. Pollak, J. St-Pierre. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer & Metabolism 2 (2014) 1-14. https://doi.org/10.1186/2049-3002-2-12

S. Thakur, S.K. Gupta, V. Ali, P. Singh, M. Verma. Aldose Reductase: a cause and a potential target for the treatment of diabetic complications. Archives of Pharmacal Research 44 (2021) 655-667. https://doi.org/10.1007/s12272-021-01343-5

Y. Shen, Y. Si, J. Lu, X. Ma, L. Zhang, Y. Mo, W. Lu, W. Zhu, Y. Bao, G. Hu, J. Zhou. Association between 1,5-Anhydroglucitol and Acute C Peptide Response to Arginine among Patients with Type 2 Diabetes. Journal of Diabetes Research 2020 (2020) 4243053. https://doi.org/10.1155/2020/4243053

Y. Yuan, J. Cheng, C. Chen, Y. Wang. Combining serum 1,5-anhydroglucitol with fasting plasma glucose to detect diabetes mellitus in a community-based population with hypertension. Annals of Palliative Medicine 10 (2021) 8746-8752. https://doi.org/10.21037/apm-21-1305

B.L. Moyce Gruber, V.W. Dolinsky. The Role of Adiponectin during Pregnancy and Gestational Diabetes. Life 13 (2023) 301. https://doi.org/10.3390/life13020301

H. Zhu, S. wai Leung. MicroRNA biomarkers of type 2 diabetes: evidence synthesis from meta-analyses and pathway modelling. Diabetologia 66 (2023) 288-299. https://doi.org/10.1007/s00125-022-05809-z

C.M. Parrinello, E. Selvin. Beyond HbA1c and Glucose: the Role of Nontraditional Glycemic Markers in Diabetes Diagnosis, Prognosis, and Management. Current Diabetes Reports 14 (2014) 1-10. https://doi.org/10.1007/s11892-014-0548-3

X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin. Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosensors and Bioelectronics 25 (2009) 901-905. https://doi.org/10.1016/j.bios.2009.09.004

M. Pohanka. Glycated hemoglobin and methods for its point of care testing. Biosensors 11 (2021) 70. https://doi.org/10.3390/bios11030070

F.C. Chume, M.H. Kieling, P.A.C. Freitas, G. Cavagnolli, J.L. Camargo. Glycated albumin as a diagnostic tool in diabetes: An alternative or an additional test? PLoS ONE 14 (2019) e0227065. https://doi.org/10.1371/journal.pone.0227065

W.C. Wu, W.Y. Ma, J.N. Wei, T.Y. Yu, M.S. Lin, S.R. Shih, C.H. Hua, Y.J. Liao, L.M. Chuang, H.Y. Li. Serum glycated albumin to guide the diagnosis of diabetes mellitus. PLoS ONE 11 (2016) e0146780. https://doi.org/10.1371/journal.pone.0146780

F. Faridbod, V.K. Gupta, H.A. Zamani. Electrochemical Sensors and Biosensors. International Journal of Electrochemistry 2011 (2011) 1-2. https://doi.org/10.4061/2011/352546

F.A. Arris, A.M. Benoudjit, F. Sanober, W.W.A. Wan Salim. Characterization of electrochemical transducers for biosensor applications. in: Multifaceted Protoc. Biotechnol., (2019) 119-137. https://doi.org/10.1007/978-981-13-2257-0_11

L. Guo, Y. Zhao, Q. Huang, J. Huang, Y. Tao, J. Chen, H.Y. Li, H. Liu. Electrochemical protein biosensors for disease marker detection: progress and opportunities. Microsystems and Nanoengineering 10 (2024) 65. https://doi.org/10.1038/s41378-024-00700-w

D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors 8 (2008) 1400-1458. https://doi.org/10.3390/s80314000

B. Schmidt, M. Pacholok, D. King, J. Kariuki. Application of 3D Printers to Fabricate Low-Cost Electrode Components for Undergraduate Experiments and Research. Journal of Chemical Education 99 (2022) 1160-1166. https://doi.org/10.1021/acs.jchemed.1c01215

D.G. Calatayud, S. Neophytou, E. Nicodemou, S.G. Giuffrida, H. Ge, S.I. Pascu. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Frontiers in Chemistry 10 (2022) 830133. https://doi.org/10.3389/fchem.2022.830133

M. Adeel, M.M. Rahman, J.J. Lee. Label-free aptasensor for the detection of cardiac biomarker myoglobin based on gold nanoparticles decorated boron nitride nanosheets. Biosensors and Bioelectronics 126 (2019) 143-150. https://doi.org/10.1016/j.bios.2018.10.060

S. Destiani, I.P. Maksum, Y.W. Hartati. Biosensor Elektrokimia untuk Memonitor Level Hemoglobin Terglikasi (HbA1c) pada Penyakit Diabetes Melitus. ALCHEMY Jurnal Penelitian Kimia 19 (2023) 94. https://doi.org/10.20961/alchemy.19.1.58439.94-107

X. Wang, D. Lu, Y. Liu, W. Wang, R. Ren, M. Li, D. Liu, Y. Liu, Y. Liu, G. Pang. Electrochemical Signal Amplification Strategies and Their Use in Olfactory and Taste Evaluation. Biosensors 12 (2022) 566. https://doi.org/10.3390/bios12080566

H. Khoshsafar, H. Bagheri, P. Hashemi, M.M. Bordbar, T. Madrakian, A. Afkhami. Combination of an aptamer-based immunochromatography assay with nanocomposite-modified screen-printed electrodes for discrimination and simultaneous determination of tryptophan enantiomers. Talanta 253 (2023) 124090. https://doi.org/10.1016/j.talanta.2022.124090

S. Rajendrachari, H. Arslanoglu, A. Yaras, S.M. Golabhanvi. Electrochemical Detection of Uric Acid Based on a Carbon Paste Electrode Modified with Ta2O5 Recovered from Ore by a Novel Method. ACS Omega 8 (2023) 46946-46954. https://doi.org/10.1021/acsomega.3c06749

L. Fotouhi, A.B. Hashkavayi, M.M. Heravi. Electrochemical behaviour and voltammetric determination of sulphadiazine using a multi-walled carbon nanotube composite film-glassy carbon electrode. Journal of Experimental Nanoscience 8 (2013) 947-956. https://doi.org/10.1080/17458080.2011.624554

K. Li, Y. Li, L. Wang, L. Yang, B. Ye. Study the voltammetric behavior of 10-Hydroxycamptothecin and its sensitive determination at electrochemically reduced graphene oxide modified glassy carbon electrode. Arabian Journal of Chemistry 12 (2019) 2732-2739. https://doi.org/10.1016/j.arabjc.2015.05.014

C. Laghlimi, Y. Ziat, A. Moutcine, M. Hammi, Z. Zarhri, O. Ifguis, A. Chtaini. A new sensor based on graphite carbon paste modified by an organic molecule for efficient determination of heavy metals in drinking water. Chemical Data Collections 31 (2021) 100595. https://doi.org/10.1016/j.cdc.2020.100595

M.I.H.L. Zein, A. Hardianto, I. Irkham, S.N. Zakiyyah, M.J. Devi, N.S.A. Manan, A.U. Ibrahim, Y.W. Hartati. Recent development of electrochemical and optical aptasensors for detection of antibiotics in food monitoring applications. Journal of Food Composition and Analysis 124 (2023) 105644. https://doi.org/10.1016/j.jfca.2023.105644

F. Dridi, M. Marrakchi, M. Gargouri, J. Saulnier, N. Jaffrezic-Renault, F. Lagarde. Nanomaterial-based electrochemical biosensors for food safety and quality assessment, (2016) 167-204. https://doi.org/10.1016/B978-0-12-804301-1.00005-9

J. Bobacka. Electrochemical sensors for real-world applications. Journal of Solid State Electrochemistry 24 (2020) 2039-2040. https://doi.org/10.1007/s10008-020-04700-4

S. Menon, M.R. Mathew, S. Sam, K. Keerthi, K.G. Kumar. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. Journal of Electroanalytical Chemistry 878 (2020) 114596. https://doi.org/10.1016/j.jelechem.2020.114596

A. Moutcine, O. Ifguis, M. Amine Samaini, M. Ennachete, H. Sâadane, C. Laghlimi, A. Chtaini. Simultaneous electrochemical determination of heavy metals by an electrode modified CPE-NP-Al2O3. in: Mater. Today Proc. 53 (2021) 404-407. https://doi.org/10.1016/j.matpr.2022.01.388

W.T. Wahyuni, B.R. Putra, A. Fauzi, D. Ramadhanti, E. Rohaeti, R. Heryanto. A Brief Review on Fabrication of Screen-Printed Carbon Electrode: Materials and Techniques. Indo. J Chem. Res. 8 (2021) 210-218. https://doi.org/10.30598//ijcr.2021.7-wul

A.M. Abdel-Aziz, H.H. Hassan, I.H.A. Badr. Glassy Carbon Electrode Electromodification in the Presence of Organic Monomers: Electropolymerization versus Activation. Analytical Chemistry 92 (2020) 7947-7954. https://doi.org/10.1021/acs.analchem.0c01337

H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi. A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchemical Journal 150 (2019) 104085. https://doi.org/10.1016/j.microc.2019.104085

V. Rehacek, I. Hotovy, M. Marton, M. Mikolasek, P. Michniak, A. Vincze, A. Kromka, M. Vojs. Voltammetric characterization of boron-doped diamond electrodes for electroanalytical applications. Journal of Electroanalytical Chemistry 862 (2020) 114020. https://doi.org/10.1016/j.jelechem.2020.114020

E. Abyzova, E. Dogadina, R.D. Rodriguez, I. Petrov, Y. Kolesnikova, M. Zhou, C. Liu, E. Sheremet. Beyond Tissue replacement: The Emerging role of smart implants in healthcare. Materials Today Bio 22 (2023) 100784. https://doi.org/10.1016/j.mtbio.2023.100784

P. Lakhera, V. Chaudhary, A. Jha, R. Singh, P. Kush, P. Kumar. Recent developments and fabrication of the different electrochemical biosensors based on modified screen printed and glassy carbon electrodes for the early diagnosis of diverse breast cancer biomarkers. Materials Today Chemistry 26 (2022) 101129. https://doi.org/10.1016/j.mtchem.2022.101129

C. Yudin Kharismasari, Irkham, M.I.H.L. Zein, A. Hardianto, S. Nur Zakiyyah, A. Umar Ibrahim, M. Ozsoz, Y. Wahyuni Hartati. CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring. Bioelectrochemistry 155 (2024) 108600. https://doi.org/10.1016/j.bioelechem.2023.108600

J.K. Lee, H.N. Suh, H. Bin Park, Y.M. Park, H.J. Kim, S.H. Kim. Regenerative Strategy of Gold Electrodes for Long-Term Reuse of Electrochemical Biosensors. ACS Omega (2022) 1389-1400. https://doi.org/10.1021/acsomega.2c06851

D.A. Golosov, J.E. Okojie, S. Zavadski, S. Rudenkov, S.N. Melnikov, V. V. Kolos. Stability of the platinum electrode during high temperature annealing. Thin Solid Films 661 (2018) 53-59. https://doi.org/10.1016/j.tsf.2018.06.049

A. Kishimoto, Y. Yamada, K. Funatsu, T. Uda. Suitable Electrode Materials for Titanium Sheet Deposition. Advanced Engineering Materials 22 (2020) 1900747. https://doi.org/10.1002/adem.201900747

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao, W.C.H. Choy. Locally Welded Silver Nano-Network Transparent Electrodes with High Operational Stability by a Simple Alcohol-Based Chemical Approach. Advanced Functional Materials 25 (2015) 4211-4218. https://doi.org/10.1002/adfm.201501004

A. Safavi, A. Abi. A selective and sensitive sensor for determination of sulfide in aquatic environment. IEEE Sensors Journal 15 (2015) 3507-3513. https://doi.org/10.1109/JSEN.2014.2379696

D. Wang, X. Qiao, J. Tao, Y. Zou, H. Wu, D. Zhu, H. Li. Cu-Thienoquinone Charge-Transfer Complex: Synthesis, Characterization, and Application in Organic Transistors. ACS Applied Materials and Interfaces 10 (2018) 26451-26455. https://doi.org/10.1021/acsami.8b08360

S. Kawada, H. Hayashi, H. Ishii, M. Kimura, A. Ando, S. Omiya, N. Kubodera. Potassium sodium niobate-based lead-free piezoelectric multilayer ceramics Co-fired with nickel electrodes. Materials 8 (2015) 7423-7438. https://doi.org/10.3390/ma8115389

K.E. Toghill, L. Xiao, M.A. Phillips, R.G. Compton. The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode. Sensors and Actuators, B: Chemical 147 (2010) 642-652. https://doi.org/10.1016/j.snb.2010.03.091

D.D. Markushev, J. Ordonez-Miranda, M.D. Rabasović, M. Chirtoc, D.M. Todorović, S.E. Bialkowski, D. Korte, M. Franko. Thermal and elastic characterization of glassy carbon thin films by photoacoustic measurements. European Physical Journal Plus 132 (2017) 1-9. https://doi.org/10.1140/epjp/i2017-11307-2

L. Ferrer-Argemi, E.S. Aliabadi, A. Cisquella-Serra, A. Salazar, M. Madou, J. Lee. Size-dependent electrical and thermal conductivities of electro-mechanically-spun glassy carbon wires. Carbon 130 (2018) 87-93. https://doi.org/10.1016/j.carbon.2017.12.113

J.B. Malherbe, O.S. Odutemowo, E.G. Njoroge, D.F. Langa, T.T. Hlatshwayo, C.C. Theron. Ion bombardment of glassy carbon. Vacuum 149 (2018) 19-22. https://doi.org/10.1016/j.vacuum.2017.11.006

L. de S. Vieira. A review on the use of glassy carbon in advanced technological applications. Carbon 186 (2022) 282-302. https://doi.org/10.1016/j.carbon.2021.10.022

Y.Y. Li, X.X. Ma, X.Y. Song, L.L. Ma, Y.Y. Li, X. Meng, Y.J. Chen, K.X. Xu, A.A. Moosavi-Movahedi, B.L. Xiao, J. Hong. Glucose Biosensor Based on Glucose Oxidase Immobilized on BSA Cross-Linked Nanocomposite Modified Glassy Carbon Electrode. Sensors 23 (2023) 3209. https://doi.org/10.3390/s23063209

H.S. Magar, M.E. Ghica, M.N. Abbas, C.M.A. Brett. A novel sensitive amperometric choline biosensor based on multiwalled carbon nanotubes and gold nanoparticles. Talanta 167 (2017) 462-469. https://doi.org/10.1016/j.talanta.2017.02.048

M. Özge Karaşallı, Derya Koyuncu Zeybek. A Novel Label-Free Immunosensor Based on Electrochemically Reduced Graphene Oxide for Determination of Hemoglobin A1c. Russian Journal of Electrochemistry 56 (2020) 715-723. https://doi.org/10.1134/S1023193520090037

I. Rahmawati, I. Irkham, R. Wibowo, J. Gunlazuardi, Y. Einaga, T.A. Ivandini. Electrogenerated Chemiluminescence for Immunoassay Applications. Indonesian Journal of Chemistry 21 (2021) 1599-1618. https://doi.org/10.22146/IJC.64596

P. Zhang, Y. Zhang, X. Xiong, Y. Lu, N. Jia. A sensitive electrochemiluminescence immunoassay for glycosylated hemoglobin based on Ru(bpy)32+ encapsulated mesoporous polydopamine nanoparticles. Sensors and Actuators, B: Chemical 321 (2020) 128626. https://doi.org/10.1016/j.snb.2020.128626

Z. Li, J. Zhang, G. Dai, F. Luo, Z. Chu, X. Geng, P. He, F. Zhang, Q. Wang. A ratiometric electrochemical biosensor for glycated albumin detection based on enhanced nanozyme catalysis of cuprous oxide-modified reduced graphene oxide nanocomposites. Journal of Materials Chemistry B 9 (2021) 9324-9332. https://doi.org/10.1039/d1tb01912k

J. Liu, B. Zhu, H. Dong, Y. Zhang, M. Xu, J. Travas-Sejdic, Z. Chang. A novel electrochemical insulin aptasensor: From glassy carbon electrodes to disposable, single-use laser-scribed graphene electrodes. Bioelectrochemistry 143 (2022) 107995. https://doi.org/10.1016/j.bioelechem.2021.107995

I.P. Maksum, R. Mulyani, K. Hasan, M.I. Azizah, W. Destiarani, A.F. Maulana, M. Yusuf, T. Subroto. Study on the Mitochondrial Genome of Variants Carrying mt.3243A>G from Type-2 Diabetes Mellitus and Cataract Patients in Indonesia. HAYATI Journal of Biosciences 30 (2023) 1017-1024. https://doi.org/10.4308/hjb.30.6.1017-1024

A. Meng, X. Hong, Y. Zhang, J. Yin, L. Sheng, Z. Li. An antifouling electrochemical aptasensor based on poly (glutamic acid) and peptide for the sensitive detection of adenosine triphosphate. Microchemical Journal 168 (2021) 106365. https://doi.org/10.1016/j.microc.2021.106365

H. Wang, L. Peng, Y. Chai, R. Yuan. High-Sensitive Electrochemiluminescence C-Peptide Biosensor via the Double Quenching of Dopamine to the Novel Ru(II)-Organic Complex with Dual Intramolecular Self-Catalysis. Analytical Chemistry 89 (2017) 11076-11082. https://doi.org/10.1021/acs.analchem.7b03125

Z. Temoçin. Designing of a stable and selective glucose biosensor by glucose oxidase immobilization on glassy carbon electrode sensitive to H2O2 via nanofiber interface. Journal of Applied Electrochemistry 51 (2021) 283-293. https://doi.org/10.1007/s10800-020-01502-4

B. Mehdizadeh, L. Maleknia, A. Amirabadi, M. Shabani. Glucose sensing by a glassy carbon electrode modified with glucose oxidase/chitosan/graphene oxide nanofibers. Diamond and Related Materials 109 (2020) 108073. https://doi.org/10.1016/j.diamond.2020.108073

J. Li, Y. Liu, X. Tang, L. Xu, L. Min, Y. Xue, X. Hu, Z. Yang. Multiwalled carbon nanotubes coated with cobalt(II) sulfide nanoparticles for electrochemical sensing of glucose via direct electron transfer to glucose oxidase. Microchimica Acta 187 (2020) 1-9. https://doi.org/10.1007/s00604-019-4047-8

Y.N. Ning, B.L. Xiao, N.N. Niu, A.A. Moosavi-Movahedi, J. Hong. Glucose oxidase immobilized on a functional polymer modified glassy carbon electrode and its molecule recognition of glucose. Polymers 11 (2019) 115. https://doi.org/10.3390/polym11010115

P. Bollella, L. Gorton, R. Ludwig, R. Antiochia. A third generation glucose biosensor based on cellobiose dehydrogenase immobilized on a glassy carbon electrode decorated with electrodeposited gold nanoparticles: Characterization and application in human saliva. Sensors (Switzerland) 17 (2017) 1912. https://doi.org/10.3390/s17081912

Y. Zhou, H. Dong, L. Liu, Y. Hao, Z. Chang, M. Xu. Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin. Biosensors and Bioelectronics 64 (2015) 442-448. https://doi.org/10.1016/j.bios.2014.09.058

A. Farzadfard, J.S. Shayeh, M. Habibi-Rezaei, M. Omidi. Modification of reduced graphene/Au-aptamer to develop an electrochemical based aptasensor for measurement of glycated albumin. Talanta 211 (2020) 120722. https://doi.org/10.1016/j.talanta.2020.120722

P. Bazdar, A.R. Jalalvand, V. Akbari, R. Khodarahmi, H.C. Goicoechea. Resolving interactions of miglitol with normal and glycated human serum albumin by multivariate methods. Analytical Biochemistry 630 (2021) 114339. https://doi.org/10.1016/j.ab.2021.114339

F. Asadpour, M. Mazloum-Ardakani, F. Hoseynidokht, S.M. Moshtaghioun. In situ monitoring of gating approach on mesoporous silica nanoparticles thin-film generated by the EASA method for electrochemical detection of insulin. Biosensors and Bioelectronics 180 (2021) 113124. https://doi.org/10.1016/j.bios.2021.113124

B. Xing, T. Zhang, Q. Han, Q. Wei, D. Wu. Electrochemiluminescent immunoassay for insulin by using a quencher pair consisting of CdS:Eu nanoclusters loaded with multiwalled carbon nanotubes on reduced graphene oxide nanoribbons and gold nanoparticle-loaded octahedral Cu2O. Microchimica Acta 186 (2019) 1-7. https://doi.org/10.1007/s00604-019-3640-1

J. Li, X. Wang, W. Liu, X. Li, L. Yang, H. Ma, R. Wu, Q. Wei. Highly selective electrochemiluminescence aptasensor coupled with mesoporous Fe3O4@Cu@Cu2O as co-reaction accelerator for ATP assay based on target-triggered emitter release. Sensors and Actuators B: Chemical 346 (2021) 130581. https://doi.org/10.1016/j.snb.2021.130581

D.A. Smith, L.J. Newbury, G. Drago, T. Bowen, J.E. Redman. Electrochemical detection of urinary microRNAs via sulfonamide-bound antisense hybridisation. Sensors and Actuators, B: Chemical 253 (2017) 335-341. https://doi.org/10.1016/j.snb.2017.06.069

S. Fletcher. Screen-Printed Carbon Electrodes in Electrochemistry of Carbon Electrodes. (2015) 425-443. https://doi.org/10.1002/9783527697489.ch12

A. García-Miranda Ferrari, S.J. Rowley-Neale, C.E. Banks. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open 3 (2021). https://doi.org/10.1016/j.talo.2021.100032

A.L. Squissato, R.A.A. Munoz, C.E. Banks, E.M. Richter. An Overview of Recent Electroanalytical Applications Utilizing Screen-Printed Electrodes Within Flow Systems. ChemElectroChem 7 (2020) 2211-2221. https://doi.org/10.1002/celc.202000175

F. Jiménez-Fiérrez, M.I. González-Sánchez, R. Jiménez-Pérez, J. Iniesta, E. Valero. Glucose biosensor based on disposable activated carbon electrodes modified with platinum nanoparticles electrodeposited on poly(Azure a). Sensors (Switzerland) 20 (2020) 4489. https://doi.org/10.3390/s20164489

J. Chen, Q. Ma, M. Li, D. Chao, L. Huang, W. Wu, Y. Fang, S. Dong. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nature Communications 12 (2021) 3375. https://doi.org/10.1038/s41467-021-23737-1

R. Mulyani, N. Yumna, I.P. Maksum, T. Subroto, Y.W. Hartati. Optimization of Aptamer-Based Electrochemical Biosensor for ATP Detection Using Screen-Printed Carbon Electrode/Gold Nanoparticles (SPCE/AuNP). Indonesian Journal of Chemistry 22 (2022) 1256-1268. https://doi.org/10.22146/ijc.72820

A. Villalonga, A.M. Pérez-Calabuig, R. Villalonga. Electrochemical biosensors based on nucleic acid aptamers. Analytical and Bioanalytical Chemistry 412 (2020) 55-72. https://doi.org/10.1007/s00216-019-02226-x

S. Eissa, M. Zourob. Aptamer- Based Label-Free Electrochemical Biosensor Array for the Detection of Total and Glycated Hemoglobin in Human Whole Blood /631/1647/350/59 /692/700/139/1420/1340 /9/10 /128 /120 article. Scientific Reports 7 (2017) 1-8. https://doi.org/10.1038/s41598-017-01226-0

M. Hatada, W. Tsugawa, E. Kamio, N. Loew, D.C. Klonoff, K. Sode. Development of a screen-printed carbon electrode based disposable enzyme sensor strip for the measurement of glycated albumin. Biosensors and Bioelectronics 88 (2017) 167-173. https://doi.org/10.1016/j.bios.2016.08.005

M. Ghosh Dastidar, K. Murugappan, D. R. Nisbet, A. Tricoli. Simultaneous electrochemical detection of glycated and human serum albumin for diabetes management. Biosensors and Bioelectronics 246 (2024) 115876. https://doi.org/10.1016/j.bios.2023.115876

L. Kashefi-Kheyrabadi, M.A. Mehrgardi. Aptamer-based electrochemical biosensor for detection of adenosine triphosphate using a nanoporous gold platform. Bioelectrochemistry 94 (2013) 47-52. https://doi.org/10.1016/j.bioelechem.2013.05.005

R. Rustaman, R.R. Rahmawan, I.P. Maksum. in Silico Study of Aptamer Specificity for Detection of Adenosine Triphosphate (Atp) As Biosensor Development for Mitochondria Diabetes Diagnosis. Turkish Computational and Theoretical Chemistry 7 (2023) 58-69. https://doi.org/10.33435/TCANDTC.1181299

J.B.B. Rayappan, M. Lakshmanakumar, N. Nesakumar, S. Sethuraman, S.K. Rajan, U.M. Krishnan. Fabrication of gqd-electrodeposited screen-printed carbon electrodes for the detection of the crp biomarker. ACS Omega 6 (2021) 32528-32536. https://doi.org/10.1021/acsomega.1c04043

D.A. Smith, K. Simpson, M. Lo Cicero, L.J. Newbury, P. Nicholas, D.J. Fraser, N. Caiger, J.E. Redman, T. Bowen. Detection of urinary microRNA biomarkers using diazo sulfonamide-modified screen printed carbon electrodes. RSC Advances 11 (2021) 18832-18839. https://doi.org/10.1039/d0ra09874d

G. Li, Z. Zhou, Z. Wang, S. Chen, J. Liang, X. Yao, L. Li. An Efficient Electrochemical Biosensor to Determine 1,5-Anhydroglucitol with Persimmon-Tannin-Reduced Graphene Oxide-PtPd Nanocomposites. Materials 16 (2023) 2786. https://doi.org/10.3390/ma16072786

V. Vukojević, S. Djurdjić, M. Ognjanović, M. Fabián, A. Samphao, K. Kalcher, D.M. Stanković. Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons. Journal of Electroanalytical Chemistry 823 (2018) 610-616. https://doi.org/10.1016/j.jelechem.2018.07.013

S. Phetsang, J. Jakmunee, P. Mungkornasawakul, R. Laocharoensuk, K. Ounnunkad. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry 127 (2019) 125-135. https://doi.org/10.1016/j.bioelechem.2019.01.008

Y. Zhao, H. Zhang, Y. Li, X. Wang, L. Zhao, J. Xu, Z. Zhan, G. Zhang, W.J. Li. Glycated Hemoglobin Electrochemical Immunosensor Based on Screen-Printed Electrode. Biosensors 12 (2022) 902. https://doi.org/10.3390/bios12100902

J.M. Moon, D.M. Kim, M.H. Kim, J.Y. Han, D.K. Jung, Y.B. Shim. A disposable amperometric dual-sensor for the detection of hemoglobin and glycated hemoglobin in a finger prick blood sample. Biosensors and Bioelectronics 91 (2017) 128-135. https://doi.org/10.1016/j.bios.2016.12.038

J. Tanaka, Y. Ishige, R. Iwata, B. Maekawa, H. Nakamura, T. Sawazaki, M. Kamahori. Direct detection for concentration ratio of HbA1c to total hemoglobin by using potentiometric immunosensor with simple process of denaturing HbA1c. Sensors and Actuators, B: Chemical 260 (2018) 396-399. https://doi.org/10.1016/j.snb.2017.12.148

N.N.S. Aye, P. Maraming, R. Tavichakorntrakool, A. Chaibunruang, P. Boonsiri, S. Daduang, N. Teawtrakul, P. Prasongdee, V. Amornkitbamrung, J. Daduang. Article a simple graphene functionalized electrochemical aptasensor for the sensitive and selective detection of glycated albumin. Applied Sciences (Switzerland) 11 (2021) 10315. https://doi.org/10.3390/app112110315

S. Bunyarataphan, T. Dharakul, S. Fucharoen, K. Paiboonsukwong, D. Japrung. Glycated Albumin Measurement Using an Electrochemical Aptasensor for Screening and Monitoring of Diabetes Mellitus. Electroanalysis 31 (2019) 2254-2261. https://doi.org/10.1002/elan.201900264

M. Kameya, W. Tsugawa, M. Yamada-Tajima, M. Hatada, K. Suzuki, A. Sakaguchi-Mikami, S. Ferri, D.C. Klonoff, K. Sode. Electrochemical sensing system employing fructosamine 6-kinase enables glycated albumin measurement requiring no proteolytic digestion. Biotechnology Journal 11 (2016) 797-804. https://doi.org/10.1002/biot.201500442

W. Waiwinya, T. Putnin, D. Pimalai, W. Chawjiraphan, N. Sathirapongsasuti, D. Japrung. Immobilization-free electrochemical sensor coupled with a graphene-oxide-based aptasensor for glycated albumin detection. Biosensors 11 (2021) 85. https://doi.org/10.3390/bios11030085

T. Putnin, W. Waiwinya, D. Pimalai, W. Chawjiraphan, N. Sathirapongsasuti, D. Japrung. Dual sensitive and rapid detection of glycated human serum albumin using a versatile lead/graphene nanocomposite probe as a fluorescence-electrochemical aptasensor. Analyst 146 (2021) 4357-4364. https://doi.org/10.1039/d1an00556a

S. Şahin, Ş. Kaya, Z. Üstündağ, M.O. Caglayan. An electrochemical signal switch-based (on-off) aptasensor for sensitive detection of insulin on gold-deposited screen-printed electrodes. Journal of Solid State Electrochemistry 26 (2022) 907-915. https://doi.org/10.1007/s10008-022-05133-x

S. Liu, Z. Shen, L. Deng, G. Liu. Smartphone assisted portable biochip for non-invasive simultaneous monitoring of glucose and insulin towards precise diagnosis of prediabetes/diabetes. Biosensors and Bioelectronics 209 (2022) 114251. https://doi.org/10.1016/j.bios.2022.114251

K. Vytřas, I. Švancara, R. Metelka. Carbon paste electrodes in electroanalytical chemistry. Journal of the Serbian Chemical Society 74 (2009) 1021-1033. https://doi.org/10.2298/JSC0910021V

M. Jaafariasl, E. Shams, M.K. Amini. Silica gel modified carbon paste electrode for electrochemical detection of insulin. Electrochimica Acta 56 (2011) 4390-4395. https://doi.org/10.1016/j.electacta.2010.12.052

S. Donmez. A novel electrochemical glucose biosensor based on a poly (L-aspartic acid)-modified carbon-paste electrode. Preparative Biochemistry and Biotechnology 50 (2020) 961-967. https://doi.org/10.1080/10826068.2020.1805758

Z. Yang, M. Li, H. Li, H. Li, C. Li, B. Yang. Polycrystalline boron-doped diamond-based electrochemical biosensor for simultaneous detection of dopamine and melatonin. Analytica Chimica Acta 1135 (2020) 73-82. https://doi.org/10.1016/j.aca.2020.08.042

S.J. Cobb, Z.J. Ayres, J. V. Macpherson. Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. Annual Review of Analytical Chemistry 11 (2018) 463-484. https://doi.org/10.1146/annurev-anchem-061417-010107

Z. Liu, A.F. Sartori, J.G. Buijnsters. Role of sp2 carbon in non-enzymatic electrochemical sensing of glucose using boron-doped diamond electrodes. Electrochemistry Communications 130 (2021) 107096. https://doi.org/10.1016/j.elecom.2021.107096

Fachrurrazie, T.A. Ivandini, W. Wibowo. Preparation of glucose sensors using gold nanoparticles modified diamond electrode. in: IOP Conf. Ser. Mater. Sci. Eng. 188 (2017) 012046. https://doi.org/10.1088/1757-899X/188/1/012046

N. Yoon, Y. Jung, G. Kim, J. Kwon, H. Yang. Low-interference and sensitive electrochemical detection of glucose and lactate using boron-doped diamond electrode and electron mediator menadione. Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry (2024) 1-9. https://doi.org/10.1007/s44211-023-00497-0

I. Irkham, A.U. Ibrahim, P.C. Pwavodi, F. Al-Turjman, Y.W. Hartati. Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. Sensors 23 (2023) 2240. https://doi.org/10.3390/s23042240

M.F. Jamil, E. Biçer, B. Yarar Kaplan, S. Alkan Gürsel. One-step fabrication of new generation graphene-based electrodes for polymer electrolyte membrane fuel cells by a novel electrophoretic deposition. International Journal of Hydrogen Energy 46 (2021) 5653-5663. https://doi.org/10.1016/j.ijhydene.2020.11.039

C. Fenzl, P. Nayak, T. Hirsch, O.S. Wolfbeis, H.N. Alshareef, A.J. Baeumner. Laser-Scribed Graphene Electrodes for Aptamer-Based Biosensing. ACS Sensors 2 (2017) 616-620. https://doi.org/10.1021/acssensors.7b00066

J. Liu, H. Ji, X. Lv, C. Zeng, H. Li, F. Li, B. Qu, F. Cui, Q. Zhou. Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis. Microchimica Acta 189 (2022) 1-14. https://doi.org/10.1007/s00604-021-05157-6

Y. Luo, S. Wu, X. Xiang, J. Shu, J. Fei. Fabricating process-electrochemical property correlation of laser-scribed graphene and smartphone-based electrochemical platform for portable and sensitive biosensing. Biosensors and Bioelectronics 237 (2023) 115525. https://doi.org/10.1016/j.bios.2023.115525

M. Liu, G. Zhao, C. Yang, H. Wang, J. Cheng. An Enzymatic Electrochemical Biosensing Interface Developed by The Laser-Induced Graphene Electrode. Advanced Materials Interfaces 10 (2023) 2300235. https://doi.org/10.1002/admi.202300235

Z. Han, X. Zhang, H. Yuan, Z. Li, G. Li, H. Zhang, Y. Tan. Graphene oxide/gold nanoparticle/graphite fiber microelectrodes for directing electron transfer of glucose oxidase and glucose detection. Journal of Power Sources 521 (2022) 230956. https://doi.org/10.1016/j.jpowsour.2021.230956

L. Sakalauskiene, A. Popov, A. Kausaite-Minkstimiene, A. Ramanavicius, A. Ramanaviciene. The Impact of Glucose Oxidase Immobilization on Dendritic Gold Nanostructures on the Performance of Glucose Biosensors. Biosensors 12 (2022) 320. https://doi.org/10.3390/bios12050320

B. Tan, F. Baycan. A novel PEDOT-derived electroactive polymer-based enzymatic glucose biosensor enriched with gold nanoparticles. Polymer Bulletin (2023) 1-18. https://doi.org/10.1007/s00289-023-05077-w

S.Y. Shajaripour Jaberi, A. Ghaffarinejad, E. Omidinia. An electrochemical paper based nano-genosensor modified with reduced graphene oxide-gold nanostructure for determination of glycated hemoglobin in blood. Analytica Chimica Acta 1078 (2019) 42-52. https://doi.org/10.1016/j.aca.2019.06.018

P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong. Electrochemical exfoliation of graphite and production of functional graphene. Current Opinion in Colloid and Interface Science 20 (2015) 329-338. https://doi.org/10.1016/j.cocis.2015.10.007

S. Srinivas, A. Senthil Kumar. Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review. Biosensors 13 (2023) 353. https://doi.org/10.3390/bios13030353

B. Ozcan, M.K. Sezginturk. Highly Sensitive and Single-Use Biosensing System Based on a GP Electrode for Analysis of Adiponectin, an Obesity Biomarker. ACS Biomaterials Science and Engineering 7 (2021) 3658-3668. https://doi.org/10.1021/acsbiomaterials.1c00094

R.K. Sanjaya, D.A.N. Sukmawati, N. Ismillayli, D. Hermanto. Determination of glucose with cellulose acetate/glucose oxidase modified carbon paste electrodes. Molekul 16 (2021) 178-185. https://doi.org/10.20884/1.jm.2021.16.3.679

S. Yusan, M.M. Rahman, N. Mohamad, T.M. Arrif, A.Z.A. Latif, M.A. Mohd Aznan, W.S.B. Wan Nik. Development of an Amperometric Glucose Biosensor Based on the Immobilization of Glucose Oxidase on the Se-MCM-41 Mesoporous Composite. Journal of Analytical Methods in Chemistry 2018 (2018) 2687341. https://doi.org/10.1155/2018/2687341

A. Jędrzak, T. Rębiś, Ł. Klapiszewski, J. Zdarta, G. Milczarek, T. Jesionowski. Carbon paste electrode based on functional GOx/silica-lignin system to prepare an amperometric glucose biosensor. Sensors and Actuators, B: Chemical 256 (2018) 176-185. https://doi.org/10.1016/j.snb.2017.10.079

A.Y. Khan, S.B. Noronha, R. Bandyopadhyaya. Superior performance of a carbon-paste electrode based glucose biosensor containing glucose oxidase enzyme in mesoporous silica powder. Advanced Powder Technology 27 (2016) 85-92. https://doi.org/10.1016/j.apt.2015.11.003

A. Shamsazar, F. Shamsazar, A. Asadi, S. Rezaei-zarchi. A glucose biosensor based on glucose oxidase enzyme and ZnO nanoparticles modified carbon paste electrode. International Journal of Electrochemical Science 11 (2016) 9891-9901. https://doi.org/10.20964/2016.12.33

Y.F. Bai, T. Bin Xu, J.H.T. Luong, H.F. Cui. Direct electron transfer of glucose oxidase-boron doped diamond interface: A new solution for a classical problem. Analytical Chemistry 86 (2014) 4910-4918. https://doi.org/10.1021/ac501143e

K. Settu, P.T. Chiu, Y.M. Huang. Laser-induced graphene-based enzymatic biosensor for glucose detection. Polymers 13 (2021) 2795. https://doi.org/10.3390/polym13162795

H. Hamidi, J. Levieux, C. Larrigy, A. Russo, E. Vaughan, R. Murray, A.J. Quinn, D. Iacopino. Laser induced graphene (LIG) biosensors derived from chitosan: Towards sustainable and green electronics. Biosensors and Bioelectronics: X 15 (2023) 100403. https://doi.org/10.1016/j.biosx.2023.100403

H. Yoon, J. Nah, H. Kim, S. Ko, M. Sharifuzzaman, S.C. Barman, X. Xuan, J. Kim, J.Y. Park. A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sensors and Actuators, B: Chemical 311 (2020) 127866. https://doi.org/10.1016/j.snb.2020.127866

N. German, A. Ramanavicius, A. Ramanaviciene. Amperometric Glucose Biosensor Based on Electrochemically Deposited Gold Nanoparticles Covered by Polypyrrole. Electroanalysis 29 (2017) 1267-1277. https://doi.org/10.1002/elan.201600680

A. Salek-Maghsoudi, F. Vakhshiteh, R. Torabi, S. Hassani, M.R. Ganjali, P. Norouzi, M. Hosseini, M. Abdollahi. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosensors and Bioelectronics 99 (2018) 122-135. https://doi.org/10.1016/j.bios.2017.07.047

Downloads

Published

24-07-2024

How to Cite

Zuliska, S., Maksum, I. P., Einaga, Y., Kadja, G. T. M., & Irkham, I. (2024). Advances in electrochemical biosensors employing carbon-based electrodes for detection of biomarkers in diabetes mellitus. ADMET and DMPK, 12(3), 487–527. https://doi.org/10.5599/admet.2361

Issue

Section

Reviews

Most read articles by the same author(s)