Development of conducting paper-based electrochemical biosensor for procalcitonin detection
DOI:
https://doi.org/10.5599/admet.1575Keywords:
Gold nanoparticles, PEDOT, PEDOT:PSS, procalcitonin, monoclonal antibodies, chronoamperometryAbstract
In the present research, an advanced cellulose fiber paper (CFP) based biosensor is developed. This sensor is modified with nanocomposites containing poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) as the main matrix and functionalized gold nanoparticles (PEDOT:PSS-AuNP@CFP) for the selective and sensitive detection of bacterial infection (BI)-specific biomarker procalcitonin (PCT). Scanning electronic microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction are used to characterize the PEDOT:PSS-AuNP nanocomposite. This biosensor exhibits a high sensitivity of 1.34 μA (pg mL-1)-1 in the linear detection ranges of 1-20×104 pg mL-1, and a 24-day life span for PCT antigen detection. Anti-PCT antigenic protein is used for immobilization for PCT quantification. The results of electrochemical response studies showed that this conductive paper bioelectrode had good reproducibility, stability, and sensitivity in physiological ranges (1-20×104 pg mL-1). Further, the proposed bioelectrode is an alternative choice for point-of-care PCT detection.
Downloads
References
A.T. Singh, D. Lantigua, A. Meka, S. Taing, M. Pandher and G. Camci-Unal. Paper-Based Sensors: Emerging Themes and Applications. Sensors (Basel) 9 (2018) 2838. https://doi.org/10.3390/-s18092838
Y. Yang, E. Noviana, M.P. Nguyen, B.J. Geiss, D.S. Dandy and C.S. Henry, Paper-Based Microfluidic Devices: Emerging Themes and Applications. Analytical Chemistry 89 (2017) 71-91. https://doi.org/10.1021/acs.analchem.6b04581
Y. Gupta, A.S. Ghrera. Disposable Paper-based Biosensing Platform for Procalcitonin Detection. Anaytical Bioanalytical Chemistry Reearch 10 (2022) 15-23. https://doi.org/10.22036/ABCR.2022.340432.1761
Y. Peng, V.V. Gelder, A. Amaladoss, K.H. Patel. Covalent Binding of Antibodies to Cellulose Paper Discs and Their Applications in Naked-eye Colorimetric Immunoassays. Journal of Visual Experiment, 54111 (2016). https://doi.org/10.3791/54111
N. Sahraei, M. Mazloum-Ardakani, and F. Hoseynidokht. Electrochemical paper-based biosensors for point-of-care diagnostics: Detection methods and applications. Journal of Electrochemical Science and Engineering 12 (2022) 399-419. https://doi.org/10.5599/jese.1104
D. Chauhan, P.R. Solanki. Hydrophilic and Insoluble Electrospun Cellulose Acetate Fiber-Based Biosensing Platform for 25-Hydroxy Vitamin-D3 Detection. ACS Appl. Polym. Mater. 1 (2019) 1613-1623. https://doi.org/10.1021/acsapm.9b00179
G. Wang, G. Jiang, Y. Zhu, W. Cheng, K. Cao, J. Zhou, H. Lei, G. Xu and D. Zhao. Developing cellulosic functional materials from multi-scale strategy and applications in flexible bioelectronic devices. Carbohydrate Polymer 283 (2022) 119160. https://doi.org/10.1016/j.carbpol.2022.119160
S. Ge, L. Zhang, Y. Zhang, F. Lan, M. Yan, J. Yu. Nanomaterials-modified cellulose paper as a platform for biosensing applications. Nanoscale 9 (2017) 4366-4382. https://doi.org/10.1039/C6NR08846E
N. Ruecha, R. Rangkupan, N. Rodthongkum, O. Chailapakul. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosensor Bioelectronics 52 (2014) 13-19. https://doi.org/10.1016/j.bios.2013.08.018
N. Ruecha, K. Shin, O. Chailapakul, N. Rodthongkum. Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sensor and. Actuators B: Chemical 279 (2019) 298-304. https://doi.org/10.1016/j.snb.2018.10.024
O. Hamouma, N. Kaur, D. Oukil, A. Mahajan, M.M. Chehimi. Paper strips coated with polypyrrole-wrapped carbon nanotube composites for chemi-resistive gas sensing. Synthetic Metals 258 (2019) 116223. https://doi.org/10.1016/j.synthmet.2019.116223
J. Banerjee, K. Dutta. A short overview on the synthesis, properties and major applications of poly(p-phenylene vinylene. Chemical Papers 75 (2021) 5139-5151. https://doi.org/10.1007/s11696-02001492-9
Y. Hu, Z. Zhao, X. Bai, X. Yuan, X. Zhang, T. Masuda. Organoborane-containing polyacetylene derivatives: synthesis, characterization, and fluoride-sensing properties. RSC Advances 98 (2014) 55179-55186. https://doi.org/10.1039/C4RA11062E
R. Ramkumar, M.V. Sangaranarayanan. Electrochemical Sensing of Anesthetics using Polythiophene Coated Glassy Carbon Electrodes. Chemistry Select 4 (2019) 9776-9783. https://doi.org/10.1002/slct.201901982
Z. Hsine, S. Blili, R. Milka, H. Dorizon, A.H. Said, H. Korri-Youssoufi. Sensor based on redox conjugated poly(para-phenylene) for the simultaneous detection of dopamine, ascorbic acid, and uric acid in human serum sample. Analytical Bioanalytical Chemistry 412 (2020) 4433-4446. https://doi.org/10.1007/s00216-020-02686-6
Y. Wang, M. Mukaida, K. Kirihara, L. Lyu and Q. Wei. Poly(3,4-Ethylene Dioxythiophene)/Poly(Styrene Sulfonate) Electrodes in Electrochemical Cells for Harvesting Waste Heat. EnergyTechnology 8 (2020) 1900998. https://doi.org/10.1002/ente.201900998.
Y. Tangal, D. Coban, S. Cogal. A WSe2@ poly(3, 4-ethylenedioxythiophene) nanocomposite-based electrochemical sensor for simultaneous detection of dopamine and uric acid. Journal of Electro-chemical Science and Engineering 12 (2022) 1251-1259. https://doi.org/10.5599/jese.1375
L.G. Lascane, E.F. Oliveira, D.S. Galvão, A. Batagin-Neto. Polyfuran-based chemical sensors: Iden-tification of promising derivatives via DFT calculations and fully atomistic reactive molecular dynamics. Europian Polymer Journal 141 (2020) 110085. https://doi.org/10.1016/j.eurpolymj.2020.110085
Y.-K. Yen, C.-H. Chao and Y.-S. Yeh. A Graphene-PEDOT:PSS Modified Paper-Based Aptasensor for Electrochemical Impedance Spectroscopy Detection of Tumor Marker. Sensors 20 (2020) 1372. https://doi.org/10.3390/s20051372
S. Kumar, M. Umar, A. Saifi, S. Kumar, S. Augustine, S. Srivastava, B.D. Malhotra. Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS. Analytica Chimica Acta 1056 (2019) 135-145. https://doi.org/10.1016/j.aca.2018.12.053
S. Kumar, S. Kumar, C.M. Pandey, B.D. Malhotra. Conducting paper based sensor for cancer biomarker detection. Journal of Physics: Conference Series 704 (2016) 012010. http://doi.org/10.1088/17426596/704/1/012010
T. Beduk, E. Bihar, S.G. Surya, A.N. Castillo, S. Inal, K.N. Salama. A paper-based inkjet-printed PEDOT:PSS/ZnO sol-gel hydrazine sensor. Sensor and Actuators B: Chemical 306 (2020) 127539. https://doi.org/10.1016/j.snb.2019.127539
I.S. Kucherenko, O.O. Soldatkin, D.Y. Kucherenko, O.V. Soldatkina, S.V. Dzyadevych. Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review. Nanoscale Advances 1 (2019) 4560-4577. https://doi.org/10.1039/C9NA00491B.
C. Garcia-Cabezon, C. Salvo-Comino, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, F. Martin-Pedrosa. Nanocomposites of conductive polymers and nanoparticles deposited on porous material as a strategy to improve its corrosion resistance. Surface Coating Technology 403 (2020) 126395. https://doi.org/10.1016/j.surfcoat.2020.126395
Y. Gupta, Kalpana, A.S. Ghrera. Electrochemical studies of lateral flow assay test results for procalcitonin detection. Journal of Electrochemical Science and Engineering 12 (2022) 265-274. https://doi.org/10.5599/jese.1127
K. Muro, M. Watanabe, T. Tamai, K. Yazawa, K. Matsukawa. PEDOT/PSS nanoparticles: synthesis and properties. RSC Advances 90 (2016) 87147-87152. https://doi.org/10.1039/C6RA16829A
A. Vázquez-López, A. Yaseen, D. Maestre, J. Ramírez-Castellanos, E.S. Marstein, S.Z. Karazhanov, A. Cremades. Synergetic Improvement of Stability and Conductivity of Hybrid Composites formed by PEDOT:PSS and SnO Nanoparticles. Molecules 25 (2020) 695. https://doi.org/10.3390/molecules25030695
J. Dong, D. Gerlach, P. Koutsogiannis, P. Rudolf, G. Portale. Boosting the Thermoelectric Properties of PEDOT:PSS via Low-Impact Deposition of Tin Oxide Nanoparticles. Adv. Electron. Mat. 7 (2021) 2001284. https://doi.org/10.1002/aelm.202001284
F. Liu, G. Xiang, R. Yuan, X. Chen, F. Luo, D. Jiang, S. Huang, Y. Li, X. Pu. Procalcitonin sensitive detection based on graphene–gold nanocomposite film sensor platform and single-walled carbon nanohorns/hollow Pt chains complex as signal tags. Biosensors Bioelectronics 142 (2019) 1115322. https://doi.org/10.1016/j.bios.2019.111532
A.S. Tanak, B. Jagannath, Y. Tamrakar, S. Muthukumar, S. Prasad. Non-faradaic electrochemical impedimetric profiling of procalcitonin and C-reactive protein as a dual marker biosensor for early sepsis detection. Analytica Chimica Acta 3 (2019) 100029. https://doi.org/10.1016/j.acax.2019.100029
Á. Molinero-Fernández, M. Moreno-Guzmán, M.Á. López, A. Escarpa, Magnetic Bead-Based Electrochemical Immunoassays On-Drop and On-Chip for Procalcitonin Determination: Disposable Tools for Clinical Sepsis Diagnosis. Biosensors 10 (2020) 66. https://doi.org/10.3390/bios10060066
P. Seshadri, K. Manoli, N. Schneiderhan-Marra, U. Anthes, P. Wierzchowiec, K. Bonrad, C. Di Franco, L. Torsi. Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor. Biosensensor Bioelectronics 104 (2018) 113-119. https://doi.org/10.1016/j.bios.2017.12.041
Y. Gupta, A.S. Ghrera. Recent advances in gold nanoparticle-based lateral flow immunoassay for the detection of bacterial infection. Archives of Microbiology 203 (2021) 3767-3784. https://doi.org/10.1007/s00203-021-02357-9
F. Battaglia, V. Baldoneschi, V. Meucci, L. Intorre, M. Minunni and S. Scarano. Detection of canine and equine procalcitonin for sepsis diagnosis in veterinary clinic by the development of novel MIP-based SPR biosensors. Talanta 230 (2021) 122347. https://doi.org/10.1016/j.talanta.2021.122347
Á. Molinero-Fernández, M. Moreno-Guzmán, L. Arruza, M.Á. López, A. Escarpa. Polymer-Based Micromotor Fluorescence Immunoassay for On-the-Move Sensitive Procalcitonin Determination in Very Low Birth Weight Infants’ Plasma. ACS Sensors 5 (2020) 1336-1344. https://doi.org/10.1021/acssensors.9b02515
E. Murugan, A. Dhamodharan. Separate and simultaneous determination of vanillin, theophylline and caffeine using molybdenum disulfide embedded polyaniline/graphitic carbon nitrite nanocomposite modified glassy carbon electrode. Diamond and Related Materials 120 (2021) 108684. https://doi.org/10.1016/j.diamond.2021.108684
K. Sadani, L. Muthuraj, P. Nag, M. Fernandes, K. Kondabagil, C. Mukhopadhyay, S. Mukherji. A point of use sensor assay for detecting purely viral versus viral-bacterial samples. Sensor Actuators B: Chemical 322 (2020 )128562. https://doi.org/10.1016/j.snb.2020.128562
H. Ding, L. Yang, H. Jia, D. Fan, Y. Zhang, X. Sun, Q. Wei, H. Ju. Label-free electrochemical immunosensor with palladium nanoparticles functionalized MoS2/NiCo heterostructures for sensitive procalcitonin detection. Sensors Actuators B: Chemical 312 (2020) 1279809. https://doi.org/10.1016/j.snb.2020.127980
Gupta, Y., K. Ladi, and A. Ghrera, Electrochemical studies of lateral flow assay test results for procalcitonin detection: Original scientific paper. Journal of Electrochemical Science and Engineering, 11(2021) https://doi.org/10.5599/jese.1127
J.V. Piovesan, E.R. Santana, A. Spinelli. Reduced graphene oxide/gold nanoparticles nanocomposite-modified glassy carbon electrode for determination of endocrine disruptor methylparaben. Journal of Electroanalytical Chemistry 813 (2018) 163-170. https://doi.org/10.1016/j.jelechem.2018.02.025
B. Amanulla, S. Palanisamy, S.-M. Chen, T.-W. Chiu, V. Velusamy, J.M. Hall, T.-W. Chen, S.K. Ramaraj. Selective Colorimetric Detection of Nitrite in Water using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene oxide. Scientific Report 7 (2017) 14182. https://doi.org/10.1038/¬s41598-017-14584-6
C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham, A. Tuantranont. Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. Journal of Material Chemistry 22 (2012) 5478-5485. https://doi.org/10.1039/C2JM14005E
P. Sakunpongpitiporn, K. Phasuksom, N. Paradee, A. Sirivat. Facile synthesis of highly conductive PEDOT:PSS via surfactant templates. RSC Advances 9 (2019) 6363-6378. https://doi.org/10.1039/C8RA08801B
S. Krishnamurthy, A. Esterle, N.C. Sharma, S.V. Sahi. Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Research. Letter 9 (2014) 627. https://doi.org/10.1186/1556-276X9-627
N. Meddings, M. Heinrich, F. Overney, J.-S. Lee, V. Ruiz, E. Napolitano, S. Seitz, G. Hinds, R. Raccichini, M. Gaberšček, J. Park. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review. Journal of Power Sources 480 (2020) 228742. https://doi.org/10.1016/j.jpowsour.¬2020.228742
T. Pajkossy, R. Jurczakowski. Electrochemical impedance spectroscopy in interfacial studies. Curr. Op. Electrochem. 1 (2017) 53-58. https://doi.org/10.1016/j.coelec.2017.01.006
J. Moškon, S. Drvarič Talian, R. Dominko, M. Gaberšček. Advances in understanding Li battery mechanisms using impedance spectroscopy. Journal of Electrochemical Science and Engineering, 10 (2020) 79-93 https://doi.org/10.5599/jese.734.
J. Narang, N. Malhotra, C. Singhal, A. Mathur, D. Chakraborty, A. Anil, A. Ingle, C.S. Pundir. Point of care with micro fluidic paper based device integrated with nano zeolite-graphene oxide nanoflakes for electrochemical sensing of ketamine. Biosensor Bioelectronics 88 (2017) 249-257. https://doi.org/10.1016/j.bios.2016.08.043
H. Li, S. Song, M. Wen, T. Bao, Z. Wu, H. Xiong, X. Zhang, W. Wen, S. Wang. A novel label-free elec-trochemical impedance aptasensor for highly sensitive detection of human interferon-gamma based on target-induced exonuclease inhibition. Biosensor Bioelectronics 142 (2019) 111532. https://doi.org/10.1016/j.bios.2019.111532
S. Kumar, A. Sen, S. Kumar, S. Augustine, B.K. Yadav, S. Mishra, B.D. Malhotra. Polyaniline modified flexible conducting paper for cancer detection. Applied Physcis Letters 108 (2016) 203702. https://doi.org/10.1063/1.4950961
J.A. Buledi, S. Ameen, N.H. Khand, A.R. Solangi, I.H. Taqvi, M.H. Agheem, Z. Wajdan. CuO Nanostructures Based Electrochemical Sensor for Simultaneous Determination of Hydroquinone and Ascorbic Acid. Electroanalysis 32 (2020) 1600-1607. https://doi.org/10.1002/elan.202000083
P. Lv, L. Min, R. Yuan, Y. Chai, S. Chen. A novel immunosensor for carcinoembryonic antigen based on poly(diallyldimethylammonium chloride) protected prussian blue nanoparticles and double-layer nanometer-sized gold particles. Microchimica Acta 171 (2010) 297-304. https://doi.org/10.1007/s00604-010-0435-9
S. Nantaphol, O. Chailapakul, W. Siangproh. Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum, Sensors and Actuators B Chemical 207 (2015) 193-198. https://doi.org/10.1016/j.snb.2014.10.041
X.Y. Ge, J.X. Zhang, Y.G. Feng, A.J. Wang, L.P. Mei, J.J. Feng. Label-free electrochemical biosensor for determination of procalcitonin based on graphene-wrapped Co nanoparticles encapsulated in carbon nanobrushes coupled with AuPtCu nanodendrites. Microchimica Acta 189 (2022) 110. https://doi.org/10.1007/s00604-022-05179-8
L. Yang, J. Xue, Y. Jia, Y. Zhang, D. Wu, H. Ma, Q. Wei, H. Ju. Construction of well-ordered electrochemiluminescence sensing interface using peptide-based specific antibody immobilizer and N-(aminobutyl)-N-(ethylisoluminol) functionalized ferritin as signal indicator for procalcitonin analysis. Biosensors bioelectronics 142 (2019) 111562. https://doi.org/10.1016/j.bios.2019.111562
Y.S. Fang, H.Y. Wang, L.S. Wang, J.F. Wang. Electrochemical immunoassay for procalcitonin antigen detection based on signal amplification strategy of multiple nanocomposites. Biosensors & bioelectronics 51 (2014) 310-316. https://doi.org/10.1016/j.bios.2013.07.035
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Department of Science and Technology, Ministry of Science and Technology, India
Grant numbers YSS/2015/001330