Recent advances in electrochemical sensors and biosensors for monitoring drugs and metabolites in pharmaceutical and biological samples
DOI:
https://doi.org/10.5599/admet.1709Keywords:
Pharmaceuticals and drugs, screen printed carbon electrodes, glassy carbon electrodes, carbon nanotubesAbstract
Various applications of electrochemical sensors and biosensors have been reported in many fields. These include pharmaceuticals, drug detection, cancer detection, and analysis of toxic elements in tap water. Electrochemical sensors are characterised by their low cost, ease of manufacture, rapid analysis, small size and ability to detect multiple elements simultaneously. They also allow the reaction mechanisms of analytes, such as drugs, to be taken into account, giving a first indication of their fate in the body or their pharmaceutical preparation. Several materials are used in the construction of sensors, such as graphene, fullerene, carbon nanotubes, carbon graphite, glassy carbon, carbon clay, graphene oxide, reduced graphene oxide, and metals. This review covers the most recent progress in electrochemical sensors used to analyze drugs and metabolites in pharmaceutical and biological samples. We have highlighted carbon paste electrodes (CPE), glassy carbon electrodes (GCE), screen-printed carbon electrodes (SPCE) and reduced graphene oxide electrodes (rGOE). The sensitivity and analysis speed of electrochemical sensors can be improved by modifying them with conductive materials. Different materials used for modification have been reported and demonstrated, such as molecularly imprinted polymers, multiwalled carbon nanotubes, fullerene (C60), iron(III) nanoparticles (Fe3O4NP), and CuO micro-fragments (CuO MF). Manufacturing strategies and the detection limit of each sensor have been reported.
Downloads
References
S.B. Somvanshi, P.B. Kharat, K.M. Jadhav, N.D. Thorat, H. Townley, Nanomaterials and pharma¬co-kinetics, in Nano-Pharmacokinetics and Theranostics, Academic Press, 2021, p. 1-14. https://doi.org/10.1016/B978-0-323-85050-6.00007-4
A.A. Khorshed, M. Khairy, S.A. Elsafty, C.E. Banks. Disposable screen-printed electrodes modified with uniform iron oxide nanocubes for the simple electrochemical determination of meclizine, an antihistamine drug. Analytical Methods 11 (2019) 282-287. https://doi.org/10.1039/C8AY02405G
F. Ibrahim, A. El-Yazbi, M. Wagih, M. Barary. Sensitive inexpensive spectrophotometric and spectro¬fluori¬metric analysis of ezogabine, levetiracetam and topiramate in tablet formulations using Hantzsch condensation reaction. Spectrochimica Acta A 184 (2017) 47-60. https://doi.org/10.1016/j.saa.2017.04.078
N. Tamilselvi, A. Rajasekaran. Stability-indicating RP-HPLC method for the determination of ezogabine and identification of its degradation products. Journal of Pharmaceutical Sciences and Research 8 (2016) 19–23.
N.M. Habib, M.M. Abdelrahman, N.S. Abdelwhab, N.W. Ali. Validated chromatographic methods for the analysis of two binary mixtures containing pyridoxine hydrochloride. Journal of Association of Official Agricultural Chemists International 100 (2017) 414-421. https://doi.org/10.5740/jaoacint.16-0213
R. Peraman, M. Manikala, V.K. Kondreddy, P.R. Yiragamreddy. A stability-indicating RP-HPLC method for the quantitative analysis of meclizine hydrochloride in tablet dosage form. Journal of Chroma¬tographic Science 53 (2015) 793-799. https://doi.org/10.1093/chromsci/bmu127
M.A. Mohamed, A.S. Fayed, M.A. Hegazy, N.N. Salama, E.E. Abbas. Fully optimized new sensitive electrochemical sensing platform for the selective determination of antiepileptic drug ezogabine. Microchemical Journal 144 (2019) 130-138. https://doi.org/10.1016/j.microc.2018.08.062
H. Karimi-Maleh, R. Darabi, F. Karimi, C. Karaman, S.A. Shahidi, N. Zare, M. Baghayeri, L. Fu, S. Rostamnia, J. Rouhi, S. Rajendran. State-of-art advances on removal, degradation and electro-chemical monitoring of 4-aminophenol pollutants in real samples: A review. Environmental Research 222 (2023) 115338. https://doi.org/10.1016/j.envres.2023.115338
A. Hojjati-Najafabadi, M. Mansoorianfar, T. Liang, K. Shahin, H. Karimi-Maleh. A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Science of The Total Environment 824 (2022) 153844. https://doi.org/10.1016/j.scitotenv.2022.153844
J.A. Buledi, N. Mahar, A. Mallah, A.R. Solangi, I.M. Palabiyik, N. Qambrani, F. Karimi, Y. Vasseghian, H. Karimi-Maleh. Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: a potential method for environmental remediation. Food and Chemical Toxicology 161 (2022) 112843. https://doi.org/10.1016/j.fct.2022.112843
S. Cheraghi, M.A. Taher, H. Karimi-Maleh, F. Karimi, M. Shabani-Nooshabadi, M. Alizadeh, A. Al-Othman, N. Erk, P.K. Yegya Raman, C. Karaman. Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere 287 (2022) 132187. https://doi.org/10.1016/j.chemosphere.2021.132187
J. Mohanraj, D. Durgalakshmi, R.A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. Journal of Colloid and Interface Science 566 (2020) 463-472. https://doi.org/10.1016/j.jcis.2020.01.089
A. Moutcine, C. Laghlimi, O. Ifguis, M.A. Smaini, S.E. El Qouatli, M. Hammi, A. Chtaini. A novel carbon paste electrode modified by NP-Al2O3 for the electrochemical simultaneous detection of Pb (II) and Hg (II). Diamond and Related Materials 104 (2020) 107747. https://doi.org/10.1016/j.diamond.2020.107747
A. Moutcine, C. Laghlimi, Y. Ziat, M.A. Smaini, S.E. El Qouatli, M. Hammi, A. Chtaini. Preparation, characterization and simultaneous electrochemical detection toward Cd (II) and Hg (II) of a phosphate/zinc oxide modified carbon paste electrode. Inorganic Chemistry Communications 116 (2020) 107911. https://doi.org/10.1016/j.inoche.2020.107911
C. Laghlimi, Y. Ziat, A. Moutcine, M. Hammi, Z. Zarhri, O. Ifguis, A. Chtaini. A new sensor based on graphite carbon paste modified by an organic molecule for efficient. Chemical Data Collections 31 (2021) 100595. https://doi.org/10.1016/j.cdc.2020.100595
C. Laghlimi, Y. Ziat, A. Moutcine, M. Hammi, Z. Zarhri, R. Maallah, O. Ifguis, A. Chtaini. Analysis of Pb (II), Cu (II) and Co (II) in drinking water by a new carbon paste electrode modified with an organic molecule. Chemical Data Collections 29 (2020) 100496. https://doi.org/10.1016/j.cdc.2020.100496
M.A. Smaini, I. Smaini, M. Ennachete, C. Laghlimi, H. Saâdane, A. Moutcine, A. Chtaini. Electro-chemical determination of adenosine by natural phosphate modified carbon paste electrode: analy¬tical application in serum. Sensing and Bio-Sensing Research 23 (2019) 100272. https://doi.org/10.1016/j.sbsr.2019.100272
O. Ifguis, A. Moutcine, C. Laghlimi, Y. Ziat, R. Bouhdadi, A. Chtaini, A. Moubarik, M. Mbarki. Biopolymer-Modified Carbon Paste Electrode for the Electrochemical Detection of Pb (II) in Water. Journal of Analytical Methods in Chemistry 2022 (2022). https://doi.org/10.1155/2022/5348246
R. Maallah, A. Moutcine, C. Laghlimi, M.A. Smaini, A. Chtaini. Electrochemical bio-sensor for degradation of phenol in the environment. Sensing and Bio-Sensing Research 24 (2019) 100279. https://doi.org/10.1016/j.sbsr.2019.100279
A. Moutcine, O. Ifguis, M.A. Samaini, M. Ennachete, H. Sâadane, C. Laghlimi, A. Chtaini. Simul-taneous electrochemical determination of heavy metals by an electrode modified CPE-NP-Al2O3. Materials Today: Proceedings 53 (2022) 404-407. https://doi.org/10.1016/j.matpr.2022.01.388
Y. El Hamdouni, S. El Hajjaji, T. Szabo, L. Trif, I. Felhősi, K. Abbi, N. Labjar, L. Harmouche, A. Shaban. Bio¬mass valorization of walnut shell into biochar as a resource for electrochemical simultaneous detec¬tion of heavy metal ions in water and soil samples: Preparation, characterization, and applications. Arabian Journal of Chemistry 15 (2022) 104252. https://doi.org/10.1016/j.arabjc.2022.104252
M.A. Mohamed, A.M. Yehia, C.E. Banks, N.K. Allam. Novel MWCNTs/graphene oxide/pyrogallol composite with enhanced sensitivity for biosensing applications. Biosensors and Bioelectronics 89 (2017) 1034–1041. https://doi.org/10.1016/j.bios.2016.10.025
S. Lotfi, H. Veisi. Electrochemical determination of clonazepam drug based on glassy carbon electrode modified with Fe3O4/R-SH/Pd nanocomposite. Materials Science and Engineering : C 103 (2019) 109754. https://doi.org/10.1016/j.msec.2019.109754
M. Fallah, M. Rahimnejad, M. Asghary, M. Mashkour. An electrochemical sensor based on a carbon paste electrode for the determination of buserelin. Analytical Methods 12 (2020) 33-38. https://doi.org/10.1039/C9AY01760G
A. Zarezadeh, H.R. Rajabi, O. Sheydaei, H. Khajehsharifi. Application of a nano-structured molecularly imprinted polymer as an efficient modifier for the design of captopril drug selective sensor: Mechanism study and quantitative determination. Materials Science and Engineering: C 94 (2019) 879-885. https://doi.org/10.1016/j.msec.2018.10.042
N.P. Shetti, D. Ilager, S.J. Malode, D. Monga, S. Basu, K.R. Reddy. Poly (eriochrome black T) modified electrode for electrosensing of methdilazine. Materials Science in Semiconductor Processing 120 (2020) 105261. https://doi.org/10.1016/j.mssp.2020.105261
K. Basavaiah, V.S. Charan. The Use of Chloranilic Acid for the Spectrophotometric Determination of Three Antihistamines. Turkish Journal of Chemistry 26 (2002) 653-661. https://journals.tubitak.gov.tr/chem/vol26/iss5/3/
M.S. Raghu, K.B. Cijo, M. Xavier, K.N. Prashanth. Development and Validation of Stability-Indicating RP-UPLC Method for the Determination of Methdilazine in Bulk Drug and in Pharmaceutical Dosage Form. International Scholarly Research Network Chromatography 2012 (2012) 1-8. https://doi.org/10.5402/2012/916932
M.S. Raghu, K. Basavaiah. Simple, sensitive and selective spectrophotometric methods for the deter¬mi¬nation of methdilazine in pharmaceuticals through charge transfer complex formation reaction. Proce¬edings of the Indian National Science Academy 79 (2013) 65-78. http://eprints.uni-mysore.ac.in/10806/
J.C. Kemmegne-Mbouguen, F.P. Tchoumi. Synthesis of nanozeolites type A and X from quartz-rich Cameroonian kaolin: application to the modification of carbon paste electrode for acetaminophen and epinine electrochemical sensing. Journal of Solid State Electrochemistry 27 (2023) 1-15. https://doi.org/10.1007/s10008-022-05355-z
S. Tajik, F. Sharifi, B. Aflatoonian, A. Di Bartolomeo. A New Electrochemical Sensor for the Detection of Ketoconazole Using Carbon Paste Electrode Modified with Sheaf-like Ce-BTC MOF Nanostructure and Ionic Liquid. Nanomaterials 13 (2023) 523. https://doi.org/10.3390/nano13030523
K. Liu, H. You, G. Jia, Y. Zheng, Y. Huang, Y. Song, M. Yang, L. Zhang, H. Zhang. Hierarchically Nano-structured Coordination Polymer: Facile and Rapid Fabrication and Tunable Morphologies. Crystal Growth & Design 10 (2010) 790-797. https://doi.org/10.1021/cg901170j
J. Zoubir, N. Bougdour, W.E. Hayaoui, C. Radaa, A. Idlahcen, A. Assabbane, I. Bakas. Electrochemical Detection of Metronidazole Using Silver Nanoparticle-Modified Carbon Paste Electrode. Electro¬catalysis 13 (2022) 386-401. https://doi.org/10.1007/s12678-022-00722-w
O. Vajdle, S. Šekuljica, V. Guzsvány, L. Nagy, Z. Kónya, M.A. Ivić, D. Mijin, S. Petrović, J. Anojčić. Use of carbon paste electrode and modified by gold nanoparticles for selected macrolide antibiotics determination as standard and in pharmaceutical preparations. Journal of Electroanalytical Chemistry 873 (2020) 114324. https://doi.org/10.1016/j.jelechem.2020.114324
S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F. Pereira, J.L. Figueiredo. Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research 45 (2011) 4583-4591. https://doi.org/10.1016/j.watres.2011.06.008
G.D. Sheng, D.D. Shao, X.M. Ren, X.Q. Wang, J.X. Li, Y.X. Chen, X.K. Wang. Kinetics and thermos-dynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials 178 (2010) 505-516. https://doi.org/10.1016/j.jhazmat.2010.01.110
H. Peng, B. Pan, M. Wu, R. Liu, D. Zhang, D. Wu, B. Xing. Adsorption of ofloxacin on carbon nanotubes: solubility, pH and cosolvent effects. Journal of Hazardous Materials 211 (2012) 342-348. https://doi.org/10.1016/j.jhazmat.2011.12.063
M. Keiluweit, M. Kleber. Molecular-level interactions in soils and sediments: the role of aromatic π-systems. Environmental Science and Technology 43 (2009) 3421-3429. https://doi.org/10.1021/es8033044
D. Lin, B. Xing. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science and Technology 42 (2008) 7254-7259. https://doi.org/10.1021/es801297u
L.S. Lee, J.J. Pignatello. Evidence π–π for electron donor–acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption. Environmental Science and Technology 38 (2004) 4361-4368. https://doi.org/10.1021/es035379e
M. Elfiky, N. Salahuddin, A. Hassanein, A. Matsuda, T. Hattori. Detection of antibiotic Ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials. Microchemical Journal 146 (2019) 170-177. https://doi.org/10.1016/j.microc.2018.12.034
Y. Chang, L.X. Wang, Y.P. Li, C.Q. Hu. Factors influencing the HPLC determination for related sub-stances of Azithromycin. Journal of Chromatographic Science 54 (2016) 187-194. https://doi.org/10.1093/chromsci/bmv127
B. Wu, Y. Guo, H. Cao, Y. Zhang, L. Yu, N. Jia. A novel mesoporous molecularsieves-based electro-che¬milumenescence sensor for sensitive detection of azithromycin. Sensors and Actuators B: Chemical 186 (2013) 219-225. https://doi.org/10.1016/j.snb.2013.05.080
Y.M. Liu, Y.M. Shi, Z.L. Liu, W. Tian. A sensitive method for simultaneous determination of four macrolides by CE with electrochemiluminescence detection and its applications in human urine and tablets. Electrophoresis 31 (2010) 364-370. https://doi.org/10.1002/elps.200900302
L. Hu, T. Zhou, J. Feng, H. Jin, Y. Tao, D. Luo, S. Mei, Y.I. Lee. A rapid and sensitive molecularly imprinted electrochemiluminescence sensor for Azithromycin determination in biological samples. Journal of Electroanalytical Chemistry 813 (2018) 1-8. https://doi.org/10.1016/j.jelechem.2018.02.010
T.T. Zhu, C.H. Zhou, F.B. Kabwe, Q.Q. Wu, C.S. Li, J.R. Zhang. Exfoliation of montmorillonite and related properties of clay/polymernanocomposites. Applied Clay Science 169 ( 2019) 48 66. https://doi.org/10.1016/j.clay.2018.12.006
C. Tournassat, C.I. Steefel, I.C. Bourg, F. Bergaya. Surface properties of clay minerals. Developments in Clay Science 6 (2015) 5 31. https://doi.org/10.1016/B978-0-08-100027-4.00001-2
B.T.D. Justin, N. Blaise, H.G. Valery. Investigation of the photoactivation effect of TiO2 onto carbon-clay paste electrode by cyclic voltammetry analysis. Heliyon 9 (2023) 13474. https://doi.org/10.1016/j.heliyon.2023.e13474
M. Pawar, S. Topcu Sendoğdular, P. Gouma. A brief overview of TiO2 photocatalyst for organic dye remediation: case study of reaction mechanisms involved in Ce-TiO2 photocatalysts system. Journal of Nanomaterials 2018 (2018) 13. https://doi.org/10.1155/2018/5953609
V. Vinoth, T.D. Shergilin, A.M. Asiri, J.J. Wu, S. Anandan. Facile synthesis of copper oxide microflowers for nonenzymatic glucose sensor applications. Materials Science in Semiconductor Processing 82 (2018) 31-38. https://doi.org/10.1016/j.mssp.2018.03.032
N.Q. Dung, D.Patil, H. Jung, J. Kim, D. Kim. NiO-decorated single-walled carbon nanotubes for high-performance nonenzymatic glucose sensing. Sensors and Actuators B: Chemical 183 (2013) 381-387. https://doi.org/10.1016/j.snb.2013.04.018
N. Xiao, J. Deng, J. Cheng, S. Ju, H. Zhao, J. Xie, D. Qian, J. He. Carbon paste electrode modified with duplex molecularly imprinted polymer hybrid film for metronidazole detection. Biosensors and Bioelectronics 81 (2016) 54-60. http://dx.doi.org/10.1016/j.bios.2016.02.041
M. Shahsavari, S. Tajik, I. Sheikhshoaie, H. Beitollahi. Fabrication of nanostructure electrochemical sensor based on the carbon baste electrode (CPE) modified with ionic liquid and Fe3o4/zif-67 for electro¬catalytic sulfamethoxazole detection. Topics in Catalysis 65 (2021) 1-10. https://doi.org/10.1007/s11244-021-01471-8
N. Muthuchamy, R. Atchudan, T.N.J.I. Edison, S. Perumal, Y.R. Lee. High-performance glucose biosensor based on green synthesized zinc oxide nanoparticle embedded nitrogen-doped carbon sheet. Journal of Electroanalytical chemistry 816 (2018) 195-204. https://doi.org/10.1016/j.jelechem.2018.03.059
A. Heidari, E. Kalantar, M. Dehghan, P. Fallah. Herpes simplex encephalitis: successful treatment with acyclovir. Archives of Advances in Biosciences 10 (2019) 56-58. https://doi.org/10.22037/jps.v10i1.19886
D.J. Newman, G.M. Cragg. Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products 79 (2016) 629-661. https://doi.org/10.1021/acs.jnatprod.5b01055
X. Hong, X. Wang, Z. Wang. A rare case report of acyclovir-induced immune thrombocytopenia with tongue hematomas as the first sign, and a literature review. BioMed Central Pharmacology and Toxicology 18 (2017) 1-5. https://doi.org/10.1186/s40360-017-0120-2
Z. Shen, Q. Yu, Y. Li, Y. Bao, H. Lu. Determination of acyclovir in renal microdialysis fluid and confirmation of renal function index. Drug and Chemical Toxicology 43 (2020) 574-580. https://doi.org/10.1080/01480545.2018.1524474
S.S. Sen, A. Si, U. Chakraborty, A. Chandra. Stevens-Johnson syndrome-toxic epidermal necrolysis: a fatal cutaneous adverse reaction to oral acyclovir. British Medical Journal Case Reports 13 (2020) 8. https://doi.org/10.1136/bcr-2020-238555
K. Chu, Q. Li, Y. Cheng, Y. Liu. Efficient electrocatalytic nitrogen fixation on FeMoO4 nanorods. ACS Applied Materials & Interfaces 12 (2020) 11789-11796. https://doi.org/10.1021/acsami.0c00860
L. Tang, L. Liu, F. Yang, FeMoO4-graphene oxide photo-electro-catalyst for berberine removal and hydrogen evolution. International Journal of Hydrogen Energy 44 (2019) 19755-19761. https://doi.org/10.1016/j.ijhydene.2019.03.078
Y. Wei, L. Yao, Y. Wu, X. Liu, J. Feng, J. Ding, K. Li, Q. He. Ultrasensitive electrochemical detection for nanomolarity Acyclovir at ferrous molybdate nanorods and graphene oxide composited glassy carbon electrode. Colloids and Surfaces A: Physicochemical and Engineering Aspects 641 (2022) 128601. https://doi.org/10.1016/j.colsurfa.2022.128601
Y. Huang, D. Lu, H. Liu, S. Liu, S. Jiang, G.C. Pang, Y. Liu. Preliminary research on the receptor–ligand recognition mechanism of umami by an hT1R1 biosensor. Food & function 10 (2019) 1280-1287. https://doi.org/10.1039/C8FO02522C
A.J. Venkatakrishnan, X. Deupi, G. Lebon, C.G. Tate, G.F. Schertler, M.M. Babu. Molecular signatures of Gprotein- coupled receptors. Nature 494 (2013) 185-194. https://doi.org/10.1038/nature11896
L. Wei, X. Wang, D. Lu, Y. Li, G. Pang, J. Xie. A novel staphylococcal enterotoxin q immunosensor pre¬pared with self-assembly method based on horseradish peroxidase and double-layer gold nano¬particles. Food Analytical Methods 10 (2016) 892-899. https://doi.org/10.1007/s12161-016-0632-1
D. Lu, D. Liu, Y. Liu, X. Wang, Y. Liu, S. Yuan, R. Ren, G. Pang. Comparative study on the sensing kinetics of carbon and nitrogen nutrients in cancer tissues and normal tissues based electrochemical biosensors. Molecules 28 (2023) 1453. https://doi.org/10.3390/molecules28031453
B. Karupppaiah, A. Jeyaraman, S.M. Chen, Y.C. Huang. Development of highly sensitive electrochemical sensor for antibiotic drug ronidazole based on spinel cobalt oxide nanorods embedded with hexagonal boron nitride. Electrochimica Acta 446 (2023) 142008. https://doi.org/10.1016/j.electacta.2023.142008
J. Pu, K. Zhang, Z. Wang, C. Li, K. Zhu, Y. Yao, G. Hong. Synthesis and modification of boron nitride nanomaterials for electrochemical energy storage: from theory to application. Advanced Functional Materials 31 (2021) 1-32. https://doi.org/10.1002/adfm.202106315
A. García-Miranda Ferrari, S.J. Rowley-Neale, C.E. Banks. Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms. Analytical and Bioanalytical Chemistry 413 (2021) 663-672. https://doi.org/10.1007/s00216-020-03068-8
M. Rafiq, X. Hu, Z. Ye, A. Qayum, H. Xia, L. Hu, F. Lu, P.K. Chu. Recent advances in structural engineering of 2D hexagonal boron nitride electrocatalysts. Nano Energy 91 (2022) 106661. https://doi.org/10.1016/j.nanoen.2021.106661
H.K. Ahn, B. Han, S.J. Lee, T. Lim, J.M. Sun, J.S. Ahn, M.J. Ahn, K. Park. ALK inhibitor crizotinib com-bined with intrathecal methotrexate treatment for non-small cell lung cancer with leptomeningeal carcinomatosis. Lung Cancer 76 (2012) 253-254. https://doi.org/10.1016/j.lungcan.2012.02.003
E.E. Cohen, L.F. Licitra, B. Burtness, J. Fayette, T. Gauler, P.M. Clement, J.J. Grau, J.M. del Campo, A. Mailliez, R.I. Haddad, J.B. Vermorken, M. Tahara, J. Guigay, L. Geoffrois, M.C. Merlano, N. Dupuis, N. Krämer, X.J. Cong, N. Gibson, F. Solca, J.P. Machiels. Biomarkers predict enhanced clinical outcomes with afatinib versus methotrexate in patients with second-line recurrent and/or metastatic head and neck cancer. Annals of Oncology 28 (2017) 2526-2532. https://doi.org/10.1093/annonc/mdx344
D. Huang, H. Wu, Y. Zhu, H. Su, H. Zhang, L. Sheng, Z. Liu, H. Xu, C. Song. Sensitive determination of anti¬cancer drug methotrexate using graphite oxide-nafion modified glassy carbon electrode. Inter¬national Journal of Electrochemical Science 14 (2019) 3792-3804. https://doi.org/10.20964/2019.04.03
E. Asadian, S. Shahrokhian, A. I. Zad, F. Ghorbani-Bidkorbeh. Glassy carbon electrode modified with 3D graphene–carbon nanotube network for sensitive electrochemical determination of methotrexate. Sensors and Actuators B 239 (2017) 617-627. https://doi.org/10.1016/j.snb.2016.08.064
C. Luhana, P. Mashazi. Simultaneous detection of dopamine and paracetamol on electroreduced graphene oxide–cobalt phthalocyanine polymer nanocomposite electrode. Electrocatalysis 14 (2022) 1-12. https://doi.org/10.1007/s12678-022-00806-7
A. Wong, A.M. Santos, F.H. Cincotto, F.C. Moraes, O. Fatibello-Filho, M.D. Sotomayor. A new electro¬chemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta 206 (2020) 120252. https://doi.org/10.1016/j.talanta.2019.120252
A. Pollap, P. Knihnicki, P. Kuśtrowski, J. Kozak, M. Gołda‐Cępa, A. Kotarba, J. Kochana. Sensitive voltammetric amoxicillin sensor based on TiO2 sol modified by CMK‐3‐type mesoporous carbon and gold ganoparticles. Electroanalysis 30 (2018) 2386-2396. https://doi.org/10.1002/elan.201800203
P.B. Deroco, R.C. Rocha-Filho, O. Fatibello-Filho. A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor. Talanta 179 (2018) 115-123. https://doi.org/10.1016/j.talanta.2017.10.048
N. Kumar, Rosy, R.N. Goyal. Gold-palladium nanoparticles aided electrochemically reduced graphene oxide sensor for the simultaneous estimation of lomefloxacin and amoxicillin. Sensors and Actuators B: Chemical 243 (2017) 658-668. https://doi.org/10.1016/j.snb.2016.12.025
X. Yue, Z. Li, S. Zhao. A new electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics based on graphene and ZnO nanorods modified glassy carbon electrode. Microchemical Journal 159 (2020) 105440. https://doi.org/10.1016/j.microc.2020.105440
D.L.C. Golinelli, S.A.S. Machado, I. Cesarino. Synthesis of silver nanoparticle-graphene composites for electroanalysis applications using chemical and electrochemical methods. Electroanalysis 29 (2017) 1014-1021. https://doi.org/10.1002/elan.201600669
N.Q. Man, N.T.T. Tu, N.T.V. Hoan, H.X.A. Vu, L.L. Son, N.D.V. Quyen, D.N. Nhiem, N.H. Phong, V.T. Nguyen, T.N. Tuyen, D.Q. Khieu. Electrochemical determination of clenbuterol with nickel-ferrite/reduced-graphene-oxide-modified electrode. Journal of Nanoparticle Research 25 (2023). https://doi.org/10.1007/s11051-023-05679-5
S. Wu, X. Dai, T. Cheng, S. Li. Highly sensitive and selective ion-imprinted polymers based on one-step electrodeposition of chitosan-graphene nanocomposites for the determination of Cr(VI). Carbohydrate Polymers 195 (2018) 199-206. https://doi.org/10.1016/j.carbpol.2018.04.077
L. Chen, S. Xu, J. Li. Recent advances inmolecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews 40 (2011) 2922-2942. https://doi.org/10.1039/C0CS00084A
Y. Wu, P. Deng, Y. Tian. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer modified glassy carbonelectrode. Bioelectrochemistry 19 (2020) 107493. https://doi.org/10.1016/j.bioelechem.2019.107393
Q. He, J. Liu, J. Liang, X. Liu, W. Li, Z. Liu, Z. Ding, D. Tuo. Towards improvements for penetrating the blood–brain barrier—recent progress from a material and pharmaceuticalperspective. Cells 7 (2018) 24. https://doi.org/10.3390/cells7040024
D. Duan, H. Yang, Y. Ding, L. Li, G. Ma. A three-dimensional conductive molecularly imprinted electrochemical sensor based on MOF derived porous carbon/carbon nanotubes composites and prussian blue nanocubesmediated amplification for chiral analysis of cysteine enantiomers. Electrochimica Acta 302 (2019) 137-144. https://doi.org/10.1016/j.electacta.2019.02.028
H. Wei, Y. Wang, J. Guo, B. Qiu, D. Ding, S. Wei, E.K. Wujcik, Z. Guo. Synthesis of multifunctional carbon nanostructures. Handbook of Carbon Nano Materials 7 (2015) 89. https://doi.org/10.1142/9789814678919_0003
M. Kooshki, H. Abdollahi, S. Bozorgzadeh, B. Haghighi. Second-order data obtained from differential pulse voltammetry: determination of tryptophan at a gold nanoparticles decorated multiwalled carbon nanotube modified glassy carbon electrode. Electrochimica Acta 56 (2011) 8618-8624. https://doi.org/10.1016/j.electacta.2011.07.049
L. Qiu, G. Zhou, S. Cao. Targeted inhibition of ULK1 enhances daunorubicin sensitivity in acute myeloid leukemia. Life Sciences 243 (2020) 117234. https://doi.org/10.1016/j.lfs.2019.117234
Q. Nong, C. Zhang, Q. Liu, R. Xie, M. Dong. Effect of daunorubicin on acute promyelocytic leukemia cells using nuclear magnetic resonance spectroscopy-based metabolomics. Environmental Toxicology and Pharmacology 78 (2020) 103382. https://doi.org/10.1016/j.etap.2020.103382
M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, S. Rajendran, S. Rostamnia, L. Fu, F.S. Movahed, S. Malekmohammadi. Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation. Industrial & Engineering Chemistry Research 60 (2021) 816-823. https://doi.org/10.1021/acs.iecr.0c04698
T. Bhengo, M. Moyo, M. Shumba, O.J. Okankwo. Simultaneous oxidative determination of antibacterial drugs in aqueous solutions using an electrode modified with MWCNTs decorated with Fe3O4 nanoparticles. New Journal of Chemistry 42 (2018) 5014-5023. https://doi.org/10.1039/C8NJ00129D
R. Chokkareddy, S. Kanchi, G.G. Redhi. A novel IL-f-ZnONPs@MWCNTs nanocomposite fabricated glassy carbon electrode for the determination of sulfamethoxazole. Journal of Molecular Liquids 359 (2022) 119232.https://doi.org/10.1016/j.molliq.2022.119232
A. Yari, A. Shams. Silver-filled MWCNT nanocomposite as a sensing element for voltammetric determination of sulfamethoxazole. Analytica chimica acta 1039 (2018) 51-58. https://doi.org/10.1016/j.aca.2018.07.061
N. Murugan, R. Jerome, M. Preethika, A. Sundaramurthy, A.K. Sundramoorthy. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Journal of Materials Science & Technology 72 (2021) 122-131. https://doi.org/10.1016/j.jmst.2020.07.037
Y. Wu, P. Deng, Y. Tian, J. Feng, J. Xiao, J. Li, J. Liu, G. Li, Q. He. Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite. Journal of Nanobiotechnology 18 (2020) 112. https://doi.org/10.1186/s12951-020-00672-9
X. Zhang, Y.C. Zhang, L.X. Ma. One-pot facile fabrication of graphene-zinc oxide composite and its en¬hanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical 227 (2016) 488-496. https://doi.org/10.1016/J.SNB.2015.12.073
M. Yang, M. Guo, Y. Feng, Y. Lei, Y. Cao, D. Zhu, Y. Yu, L. Ding. Sensitive voltammetric detection of metronidazole based on three-dimensional graphene-like carbon architecture/polythionine modified glassy carbon electrode. Journal of The Electrochemical Society 165 (2018) B530. https://doi.org/10.1149/2.1311811jes
S. Tursynbolat, Y. Bakytkarim, J. Huang, L. Wang. Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multiwalled carbon nanotubes nanocomposites modified GCE. Journal of Pharmaceutical Analysis 8 (2018) 124-130. https://doi.org/10.1016/j.jpha.2017.11.001
A. Yari, A. Shams. Silver-filled MWCNT nanocomposite as a sensing element for voltammetric determination of sulfamethoxazole. Analytica Chimica Acta 1039 (2018) 51-58. https://doi.org/10.1016/j.aca.2018.07.061
C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng, W. Lan, A. Pakdel, J. Heier, F. Nüesch. Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy & Environmental Materials 3 (2020) 29-55. https://doi.org/10.1002/eem2.12058
J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, M.W. Barsoum. Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials 26 (2016) 3118-3127. https://doi.org/10.1002/adfm.201505328
F. Zhou, W. Jing, S. Liu, Q. Mao, Y. Xu, F. Han, Z. Wei, Z. Jiang. Electrodeposition of gold nanoparticles on ZnO nanorods for improved performance of enzymatic glucose sensors. Materials Science in Semiconductor Processing 105 (2020) 104708. https://doi.org/10.1016/j.mssp.2019.104708
A. Granito, A. Forgione, S. Marinelli, M. Renzulli, L. Lelasi, V. Sansone, F. Benevento, F. Piscaglia, F. Tovoli. Regorafenib combined with other systemic therapies: exploring promising therapeutic combinations in HCC. Journal of Hepatocellular Carcinoma 8 (2021) 477-492. https://doi.org/10.2147/JHC.S251729
D. Merzak, S.I. Kaya, C. Ahmet, K.B. Nurgul, T. Mohamed, A.O. Sibel. Detailed electrochemical behavior and thermodynamic parameters of anticancer drug regorafenib and its sensitive electroanalytical assay in biological and pharmaceutical samples. Microchemical Journal 170 (2021) 106717. https://doi.org/10.1016/j.microc.2021.106717
H. Kim, Y. Bang, M.A. Lee, J.W. Kim, H.K. Jee, H.K. Chon, B. Kang, M.J. Kang, I. Kim, J. Cheon, J.E. Hwang, J.H. Kang, S. Byeon, J.Y. Hong, B.Y. Ryoo, B.Y. Lim, C. Yoo. Regorafenib in patients with advanced Child-Pugh B hepatocellular carcinoma: a multicentre retrospective study. Liver International 40 (2020) 2544-2552. https://doi.org/10.1111/liv.14573
B. Sravani, S. Kiranmai, G.R. Reddy, J.P. Park, Y. V. Reddy, G. Madhavi. Highly sensitive detection of anticancer drug based on bimetallic reduced graphene oxide nanocomposite. Chemosphere 287 (2022) 132281. https://doi.org/10.1016/j.chemosphere.2021.132281
E. Laviron. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electro¬chemistry 101 (1979) 19-28. https://doi.org/10.1016/S0022-0728(79)80075-3
E. Naghian, F. Shahdostfard, E. Sohouli, V. Safarifard, M. Najafi, M. Rahimi- Nasrabadi, A. sobhani-nasab. Electrochemical determination of levodopa on a reduced graphene oxide paste electrode modified with a metal-organic framework. Microchemical Journal 156 (2020) 104888. https://doi.org/10.1016/j.microc.2020.104888
D. Vasu, A. Karthi Keyan, S. Sakthinathan, T.W. Chiu. Investigation of electrocatalytic and photo-catalytic ability of Cu/Ni/TiO2/MWCNTs Nanocomposites for detection and degradation of antibiotic drug Furaltadone. Scientific Reports 12 (2022) 1-16. https://doi.org/10.1038/s41598-022-04890-z
A. Veseli, F. Mullallari, F. Balidemaj, L. Berisha, Ľ. Švorc, T. Arbneshi. Electrochemical determination of erythromycin in drinking water resources by surface modified screen-printed carbon electrodes. Microchemical Journal 148 (2019) 412-418. https://doi.org/10.1016/j.microc.2019.04.086
E.M. Materón, A. Wong, T.A. Freitas, R.C. Faria, O.N. Oliveira. A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60. Journal of Pharmaceutical Analysis 11 (2021) 646-652. https://doi.org/10.1016/j.jpha.2021.03.004
S. Kurbanoglu, S.A. Ozkan. Electrochemical carbon based nanosensors : a promising tool in pharmaceutical and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis 147 (2018) 439-457. https://doi.org/10.1016/j.jpba.2017.06.062
P. Yáñez-Sedeño,S. Campuzano, J.M. Pingarrón. Fullerenes in electrochemical catalytic and affinity biosensing. C - Journal of Carbon Research 3 (2017) 21. https://doi.org/10.3390/c3030021
J.H. Carvalho, J.L. Gogola, M.F. Bergamini, L.H. Marcolino-Junior, B.C. Janegitz. Disposable and low-cost lab-made screen-printed electrodes for voltammetric determination of L-dopa. Sensors and Actuators Reports 3 (2021) 100056. https://doi.org/10.1016/j.snr.2021.100056
S.M.V. dos Santos, P.R. De Oliveira, M.C. De Oliveira, M.F. Bergamini, L.H. Marcolino. Eletrodos impressos construídos por serigrafia utilizando negro de fumo como material conductor. Revista Virtual de Quimica 9 (2017) 626-640. https://doi.org/10.21577/1984-6835.20170037
H. Menon, R. Aiswarya, K.P. Surendran. Screen printable MWCNT inks for printed electronics. Royal Society of Chemistry Advances 7 (2017) 44076-44081. https://doi.org/10.1039/c7ra06260e
A. Gevaerd, E.Y. Watanabe, C. Belli, L.H. Marcolino-Junior, M.F. Bergamini. A complete lab-made point of care device for non-immunological electrochemical determination of cortisol levels in salivary samples. Sensors and Actuators B: Chemical 332 (2021) 129532. https://doi.org/10.1016/j.snb.2021.129532
T. Rungsawang, E. Punrat, J. Adkins, C. Henry, O. Chailapakul. Development of electrochemical paper-based glucose sensor using cellulose-4-aminophenylboronic acid-modified screen-printed carbon electrode. Electroanalysis 28 (2016) 462-468. https://doi.org/10.1002/elan.201500406
H.S. Magar, R.Y.A. Hassan, M.N. Abbas. Non-enzymatic disposable electrochemical sensors based on CuO/Co3O4@MWCNTs nanocomposite modified screen-printed electrode for the direct determination of urea. Scientific Reports 13 (2023) 2034. https://doi.org/10.1038/s41598-023-28930-4
Y. Wang, J. Xie, L. Tao, H. Tian, S. Wang, H. Ding. Simultaneous electrochemical determination of epirubicin and methotrexate in human blood using a disposable electrode modified with nano-Au/MWNTs-ZnO composites. Sensors and Actuators B 204 (2014) 360-367. https://doi.org/10.1016/j.snb.2014.07.099
P.C. Motsaathebe, O.E. Fayemi. Electrochemical detection of ascorbic acid in oranges at mwcnt aonp nanocompositefabricated electrode. Nanomaterials 12 (2022) 645. https://doi.org/10.3390/nano12040645
G. Uwaya, O.E. Fayemi. Electrochemical detection of ascorbic acid in orange on iron(iii) oxide nanoparticles modified screen printed carbon electrode. Journal of Cluster Science 33 (2022) 1035-1043. https://doi.org/10.1007/s10876-021-02030-7
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.