Electrochemical sensor based on multi-walled carbon nanotubes and two-dimensional zeolitic imidazolate framework nanosheets: Application in determining dacarbazine
Original scientific article
DOI:
https://doi.org/10.5599/admet.2617Keywords:
Screen-printed carbon electrode, carbon nanostructures, cancer disease, chemotherapy, pharmaceutical compounds, two-dimensional metal-organic frameworksAbstract
Background and Purpose: Cancer is a serious public health concern, hence the determination of dacarbazine as a significant chemotherapeutic agent is very important. Experimental approach: In the present work, we use a facile method to synthesize a nanocomposite of multi-walled carbon nanotubes (MWCNTs) and two-dimensional zeolitic imidazolate framework nanosheets (2D ZIF-L NSs). The resulting MWCNTs/2D ZIF-L NSs nanocomposite was characterized by field-emission scanning electron microscopy. The MWCNTs/2D ZIF-L NSs nanocomposite was subsequently used to modify a screen-printed carbon electrode (SPCE) to achieve an electrochemical sensing platform for the detection of dacarbazine. Key results: From cyclic voltammetric studies, it was found that the MWCNTs/2D ZIF-L NSs nanocomposite modified SPCE provided less anodic peak potential (700 mV) and higher anodic peak current (7.7 µA) for oxidation of dacarbazine when compared to other SPCEs. The MWCNTs/2D ZIF-L NSs/SPCE displayed good performance in the quantitative determination of dacarbazine. Under optimum conditions, the differential pulse voltammetry response exhibited a linear concentration range of 0.01 to 80.0 µM for dacarbazine with a relatively high sensitivity of 0.1384 µA µM-1 and an estimated detection limit of 0.004 µM. The MWCNTs/2D ZIF-L NSs/SPCE sensor was also successfully applied to the determination of dacarbazine in injections samples of dacarbazine. Conclusion: This detection method can be used as a valuable tool in the analysis of pharmaceutical formulations to bring benefits in cancer treatment.
Downloads
References
S. Deepa, B.K. Swamy, K.V. Pai. Voltammetric detection of anticancer drug Doxorubicin at pencil graphite electrode: A voltammetric study. Sensors International 1 (2020) 100033. https://doi.org/10.1016/j.sintl.2020.100033
G. Wei, Y. Wang, G. Yang, Y. Wang, R. Ju. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 11 (2021) 6370. https://doi.org/10.7150/thno.57828
V. Schirrmacher. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. International Journal of Oncology 54 (2019) 407-419. https://doi.org/10.3892/ijo.2018.4661
M. Ibrahim, Y. Temerk, H. Ibrahim. Fabrication of a new biosensor based on a Sn doped ceria nanoparticle modified glassy carbon paste electrode for the selective determination of the anticancer drug dacarbazine in pharmaceuticals. RSC Advances 7 (2017) 32357-32366. https://doi.org/10.1039/C7RA04331G
S. Kewitz, M. Stiefel, C.M. Kramm, M.S. Staege. Impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and MGMT expression on dacarbazine resistance of Hodgkin's lymphoma cells. Leukemia Research 38 (2014) 138-143. https://doi.org/10.1016/j.leukres.2013.11.001
S. Deepa, B.K. Swamy, K.V. Pai. A surfactant SDS modified carbon paste electrode as an enhanced and effective electrochemical sensor for the determination of doxorubicin and dacarbazine its applications: A voltammetric study. Journal of Electroanalytical Chemistry 879 (2020) 114748. https://doi.org/10.1016/j.jelechem.2020.114748
B. Milijašević, D. Stefanović, M. Lalić-Popović, Z. Tomić, J. Kolarović, D. Lalošević, M. Mikov. Acute toxic effects of single dose dacarbazine: hematological and histological changes in an animal model. Biotechnic & Histochemistry 89 (2014) 583-590. https://doi.org/10.3109/10520295.2014.918653
C.O. Cardoso, T.Y. Uwai, T. Gratieri, M. Cunha-Filho, G.M. Gelfuso. Chromatographic method for dacarbazine quantification in skin permeation experiments. Journal of Pharmaceutical and Biomedical Analysis 234 (2023) 115593. https://doi.org/10.1016/j.jpba.2023.115593
D. Abd El‐Hady, H.M. Albishri, R. Rengarajan. Eco‐friendly ionic liquid assisted capillary electrophoresis and α‐acid glycoprotein‐assisted liquid chromatography for simultaneous determination of anticancer drugs in human fluids. Biomedical Chromatography 29 (2015) 925-934. https://doi.org/10.1002/bmc.3376
W. Cheng, J. Liu, B. Jackson. Quantifying plasma dacarbazine levels in advanced melanoma patients: a liquid chromatography-tandem mass spectrometry performance analysis. Scandinavian Journal of Clinical and Laboratory Investigation 83 (2023) 614-619. https://doi.org/10.1080/00365513.2023.2297356
S. Dehdashtian, N. Behbahanian, K.M. Taherzadeh. An ultrasensitive electrochemical sensor for direct determination of anticancer drug dacarbazine based on multiwall carbon nanotube-modified carbon paste electrode and application in pharmaceutical sample. Journal of the Iranian Chemical Society 15 (2018) 931-941. https://doi.org/10.1007/s13738-018-1291-5
R. PK, C. Kafley, R. A Sukumaran, S. Kummari, P.K. VVN, Y.G. Kotagiri. Electrochemical strip sensor based on a graphene-Au-PEDOT nanocomposite for detection and continuous monitoring of dacarbazine. ACS Applied Nano Materials 6 (2023) 16915-16926. https://doi.org/10.1021/acsanm.3c03061
M. Mazloum-Ardakani, H. Beitollahi, M. K. Amini, B.B.F. Mirjalili, F. Mirkhalaf. Simultaneous determination of epinephrine and uric acid at a gold electrode modified by a 2-(2,3-dihydroxy phenyl)-1, 3-dithiane self-assembled monolayer. Journal of Electroanalytical Chemistry 651 (2011) 243-249. https://doi.org/10.1016/j.jelechem.2010.09.020.
S. Yeasmin, B. Wu, Y. Liu, A. Ullah, L.J. Cheng. Nano gold-doped molecularly imprinted electrochemical sensor for rapid and ultrasensitive cortisol detection. Biosensors and Bioelectronics 206 (2022) 114142. https://doi.org/10.1016/j.bios.2022.114142
M. Mazloum-Ardakani, H. Beitollahi, M. K. Amini, F. Mirkhalaf, B.B.F. Mirjalili, A. Akbari. Application of 2-(3,4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid. Analyst 136 (2011) 1965-1970. https://doi.org/10.1039/C0AN00823K
M. Saraban, A. Numnuam, N. Nontipichet, T. Kangkamano, P. Thavarungkul, P. Kanatharana, S. Khumngern. A disposable electrochemical caffeine sensor based on a screen-printed electrode modified with a copper-metal organic framework and functionalized multi-walled carbon nanotube nanocomposite. New Journal of Chemistry 8 (2024) 3638-3645. https://doi.org/10.1039/D3NJ05570A
M.I. González-Sánchez, H. Khadhraoui, R. Jiménez-Pérez, J. Iniesta, E. Valero. Non-enzymatic glucose sensor using mesoporous carbon screen-printed electrodes modified with cobalt phthalocyanine by phase inversion. Microchemical Journal 200 (2024) 110314. https://doi.org/10.1016/j.microc.2024.110314
K. Turan, A. Üğe, B. Zeybek, G.A. Tiğ. Development of a facile electrochemical sensor based on GCE modified with one-step prepared PNMA-CeO2-fMWCNTs composite for simultaneous detection of UA and 5-FU. Analytical Methods 16 (2024) 40-50. https://doi.org/10.1039/D3AY02099A
S. Tajik, M.A. Taher, H. Beitollahi. First report for simultaneous determination of methyldopa and hydrochlorothiazide using a nanostructured based electrochemical sensor. Journal of Electroanalytical Chemistry 704 (2013)137-144. https://doi.org/10.1016/j.jelechem.2013.07.008
Y. Zhang, T. Shao, H. Zhang. Electrochemical sensors based on self-assembling peptide/carbon nanotube nanocomposites for sensitive detection of bisphenol A. Sensors 24 (2024) 1465. https://doi.org/10.3390/s24051465
Q.F. Li, X. Chen, H. Wang, M. Liu, H.L. Peng. Pt/MXene-based flexible wearable non-enzymatic electrochemical sensor for continuous glucose detection in sweat. ACS Applied Materials & Interfaces 15 (2023) 13290-13298. https://doi.org/10.1021/acsami.2c20543
A.G. Ramu, L. Telmenbayar, J. Theerthagiri, D. Yang, M. Song, D. Choi. Synthesis of a hierarchically structured Fe3O4–PEI nanocomposite for the highly sensitive electrochemical determination of bisphenol A in real samples. New Journal of Chemistry 44 (2020) 18633-18645. https://doi.org/10.1039/D0NJ03830J
C. Pettinari, F. Marchetti, N. Mosca, G. Tosi, A. Drozdov. Application of metal− organic frameworks. Polymer International 66 (2017) 731-744. https://doi.org/10.1002/pi.5315
B. Chen, Z. Yang, Y. Zhu, Y. Xia. Zeolitic imidazolate framework materials: recent progress in synthesis and applications. Journal of Materials Chemistry A 2 (2014) 16811-16831. https://doi.org/10.1039/C4TA02984D
X. Qiao, X. Ma, X. Ma, T. Yue, Q. Sheng. A label-free aptasensor for ochratoxin a detection with signal amplification strategies on ultrathin micron-sized 2D MOF sheets. Sensors and Actuators, B: Chemical 334 (2021) 129682. https://doi.org/10.1016/j.snb.2021.129682
Z. Cheng, H. Song, Z. Li, L. Chen, H. Hu, Y. Lv, Z. Liu, Y. Wu, Y. Lu, D. Han, S. Yu. Hierarchical composites based on near-spherical ZnO attached on nitrogen-doped reduced graphene oxide for enhanced nitrite electrochemical sensing property. Microchemical Journal 197 (2024) 109764. https://doi.org/10.1016/j.microc.2023.109764
H. Karimi-Maleh, M. Keyvanfard, K. Alizad, M. Fouladgar, H. Beitollahi, A. Mokhtari, F. Gholami-Orimi. Voltammetric Determination of N-Actylcysteine Using Modified Multiwall Carbon Nanotubes Paste Electrode. International Journal of Electrochemical Sciences 6 (2011) 6141-6150. https://doi.org/10.1016/S1452-3981(23)19669-6
F. Gao, Z. Yan, Y. Cai, J. Yang, W. Zhong, Y. Gao, S. Liu, M. Li, L. Lu. 2D leaf-like ZIF-L decorated with multi-walled carbon nanotubes as electrochemical sensing platform for sensitively detecting thiabendazole pesticide residues in fruit samples. Analytical and Bioanalytical Chemistry 413 (2021) 7485-7494. https://doi.org/10.1007/s00216-021-03711-y
J. Liu, B. Yin, X. Liu, C. Yang, S. Zang, S. Wu. Enhancing electrochemical properties of a two-dimensional zeolitic imidazole framework by incorporating a conductive polymer for dopamine detection. Analyst 148 (2023) 4525-4532. https://doi.org/10.1039/D3AN00588G
Published
Issue
Section
License
Copyright (c) 2025 Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad, Zahra Dourandish, Samuel Adeloju

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
Funding data
-
National Institute for Medical Research Development
Grant numbers 4021563