Development of a highly sensitive voltammetric sensor for the detection of folic acid by using MoS2 and ionic liquid-modified carbon paste electrode
DOI:
https://doi.org/10.5599/admet.1823Keywords:
vitamin B, transition metal dichalcogenides, electrocatalysisAbstract
Background and purpose: Sensitive analytical determination of folic acid is important in clinical laboratories due to its versatile biological functions. Experimental approach: A simple folic acid sensor was successfully fabricated based on two-dimensional transition metal dichalcogenide MoS2 modified carbon ionic liquid paste electrode (MoS2-CILPE). The electrochemical properties of the fabricated electrode were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry. Key results: The fabricated sensor displayed excellent electroactivity towards folic acid using CV. Under optimal conditions (0.1 M PBS (pH 7.0)), the DPV oxidation peak current was proportional to folic acid concentration in the range from 5.0 μM to 100.0 μM with an estimated limit of detection of 1.0 µM and limit of quantification of 5.0 µM. Conclusion: The ability of the sensor for routine analyses was demonstrated by the detection of folic acid present in folic acid tablets and urine samples with appreciable recovery values.
Downloads
References
Background and purpose: Sensitive analytical determination of folic acid is important in clinical laboratories due to its versatile biological functions. Experimental approach: A simple folic acid sensor was successfully fabricated based on two-dimensional transition metal dichalcogenide MoS2 modified carbon ionic liquid paste electrode (MoS2-CILPE). The electrochemical properties of the fabricated electrode were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry. Key results: The fabricated sensor displayed excellent electroactivity towards folic acid using CV. Under optimal conditions (0.1 M PBS (pH 7.0)), the DPV oxidation peak current was proportional to folic acid concentration in the range from 5.0 μM to 100.0 μM with an estimated limit of detection of 1.0 µM and limit of quantification of 5.0 µM. Conclusion: The ability of the sensor for routine analyses was demonstrated by the detection of folic acid present in folic acid tablets and urine samples with appreciable recovery values.
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.