Modulation of the biocompatibility of collagen/polyelectrolyte semi-IPN hydrogels with Zn-bioMOFs
DOI:
https://doi.org/10.5599/admet.2074Keywords:
Wound healing, chronic wounds, wound dress, L-histidine, ZIF-8Abstract
Background and purpose: In this study, we examined the impact of Zn-bioMOF structures on the physical and chemical characteristics as well as the in vitro biocompatibility of a matrix composed of semi-interpenetrating polymeric networks (semi-IPN) made from collagen and L-tyrosine-based polyelectrolytes. Experimental approach: We hydrothermally synthesized L-1, ZIF-8H Zn-bioMOFs, and the Zn-(L-His)2 complex, utilizing L-histidine, a bioactive amino acid, as a ligand. These metal-organic compounds primarily enhance the mechanical properties of the novel composite hydrogels through physical interactions such as hydrogen bonds and dipolar interactions. They also accelerate the gelation process. Composites containing Zn-bioMOFs exhibited greater biocompatibility than the collagen/polyelectrolyte matrix alone, as evidenced by cytotoxicity assays conducted with porcine fibroblasts, human monocytes, and RAW 264.7 cells. Furthermore, the evaluated materials did not exhibit hemolysis. We investigated the influence of Zn-bioMOFs on cell signaling by measuring the levels of crucial cytokines involved in the healing process, such as MCP-1, TGF-β, IL-10, and TNF-α secreted by human monocytes. Key results: The composite with Zn(L-His)2 promoted the secretion of MCP-1, TGF-β, and IL-10, while a decrease in TNF-α secretion was observed with the composite containing ZIF-8H. Zn-bioMOFs enhanced certain aspects of the biomedical and physicochemical properties of the composite hydrogels. Conclusion: Although the overall performance of the tested materials did not differ significantly, it is worth noting that the presence of Zn-bioMOFs in biopolymeric hydrogels modulated the metabolic activity of cells important for healing and their cytokine signaling, leading to improved biomedical performance.
Downloads
References
S. T. Meek, J. A. Greathouse, M. D. Allendorf. Metal-organic frameworks: A rapidly growing class of versatile nanoporous materials. Advanced Materials 23 (2011) 249-267. https://doi.org/10.1002/adma.201002854
N. Singh, S. Qutub, N. M. Khashab. Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. Journal of Materials Chemistry B 9 (2021) 5925-5934. https://doi.org/10.1039/d1tb01044a
M. Moharramnejad, A. Ehsani, S. Salmani, M. Shani, R.E. Makelshah, Z.S. Robatjazi, H. Parsimehr. Zinc-based metal-organic frameworks: synthesis and recent progress in biomedical application. Journal of Inorganic and Organometalic Polymers and Materials 32 (2022) 3339-3354. https://doi.org/10.1007/s10904-022-02385-y
S. Bahrani, S. A. Hashemi, S. M. Mousavi, R. Azhdari. Zinc-based metal-organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug Metabolism Reviews 51 (2019) 356-377. https://doi.org/10.1080/03602532.2019.1632887
D. F. Bahr, J. A. Reld, W. M. Mook, C. A. Bauer, R. Stumpf, A. J. Skulan, N. R. Moody, B. A. Simmons, M. M. Shindel, M. D. Allendorf. Mechanical properties of cubic zinc carboxyl- ate IRMOF-1 metal-organic framework crystals. Physical Review B 76 (2007) 184106. https://doi.org/10.1103/PhysRevB.76.184106
H. N. Abdelhamid. Zeolitic Imidazolate Frameworks (ZIF-8) for Biomedical Applications: A Review. Current Medicinal Chemistry 28 (2022) 7023-7075. https://doi.org/10.2174/1875533xmte2bmdqd0
V. Hoseinpour, Z. Shariatinia. Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: A review. Tissue and Cell 72 (2021) 101588. https://doi.org/10.1016/j.tice.2021.101588
S. L. Anderson, K. C. Stylianou. Biologically derived metal organic frameworks. Coordination Chemistry Reviews 349 (2017) 102-128. https://doi.org/10.1016/j.ccr.2017.07.012
J. S. Barbosa, F. Figueira, S. S. Braga, F. A. Almeida Paz. Metal-organic frameworks for biomedical applications: The case of functional ligands in Metal-Organic Frameworks for Biomedical Applications. Masoud Mozafari Ed., Cambridge, USA, Woodhead Publishing, 2020, p. 69-92. https://doi.org/10.1016/B978-0-12-816984-1.00005-6
B. Sun, M. Bilal, S. Jia, Y. Jiang, J. Cui. Design and bio-applications of biological metal-organic frameworks. Korean Journal of Chemical Engineering 36 (2019) 1949-1964. https://doi.org/10.1007/s11814-019-0394-8
H. S. Wang, Y. H. Wang, Y. Ding. Development of biological metal-organic frameworks designed for biomedical applications: From bio-sensing/bio-imaging to disease treatment. Nanoscale Advances 2 (2020) 3788-3797. https://doi.org/10.1039/d0na00557f
V. Subramaniyam, P. V. Ravi, M. Pichumani. Structure coordination of solitary amino acids as ligands in metal-organic frameworks (MOFs): A comprehensive review. Journal of Molecular Structure 1251 (2022) 131931. https://doi.org/10.1016/j.molstruc.2021.131931
H. Cai, Y. L. Huang, D. Li. Biological metal-organic frameworks: Structures, host-guest chemistry and bio-applications. Coordination Chemistry Reviews 378 (2019) 207-221. https://doi.org/10.1016/j.ccr.2017.12.003
A. C. Kathalikkattil, R. Babu, R. K. Roshan, H. Lee, H. Kim, J. Tharun, E. Suresh, D. W. Park. An lcy-topology amino acid MOF as eco-friendly catalyst for cyclic carbonate synthesis from CO2: Structure-DFT corroborated study. Journal of Materials Chemistry A 45 (2015) 22636-22647. https://doi.org/10.1039/c5ta05688h
E. Salama, M. Ghanim, H. S. Hassan, W. A. Amer, E. M. Ebeid, A. H. El-Shazly, M. Ossman, M. F. Elkady. Novel aspartic-based bio-MOF adsorbent for effective anionic dye decontamination from polluted water. RSC Advances 12 (2022) 18363-18372. https://doi.org/10.1039/d2ra02333d
P. Escamilla, M. Viciano‐chumillas, R. Bruno, D. Armentano, E. Pardo, J. Ferrando‐Soria, Photodegradation of brilliant green dye by a zinc biomof and crystallographic visualization of resulting CO2. Molecules 26 (2021) 4098. https://doi.org/10.3390/molecules26134098
A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre. BioMOFs: Metal-organic frameworks for biological and medical applications. Angewandte Chemie 49 (2010) 6260-6266. https://doi.org/10.1002/anie.201000048
M. Caldera-Villalobos, D. A. Cabrera-Munguía, J. J. Becerra-Rodríguez, J. A. Claudio-Rizo. Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal-organic frameworks. RSC Advances 12 (2022) 3672-3686. https://doi.org/10.1039/d1ra08824f
J. J. Mendoza-Villafaña, M. G. Franco-Martínez, J. A. Claudio-Rizo, D. A. Cabrera-Munguía, M. Caldera-Villalobos, M. I. León-Campos, T. E. Flores-Guía, L. F. Cano-Salazar. Zn-based Metal-Organic Frameworks (MOFs) Incorporated into Collagen-Polysaccharide-based Composite Hydrogels for Their Use in Wound Healing. Asian Journal of Basic Science and Research 5 (2023) 41-54. http://doi.org/10.38177/AJBSR.2023.5106
J. A. Claudio-Rizo, M. Rangel-Argote, L. E. Castellano, J. Delgado, J. L. Mata-Mata, B. Mendoza-Novelo. Influence of residual composition on the structure and properties of extracellular matrix derived hydrogels. Materials Science and Engineering C 79 (2017) 793-801. https://doi.org/10.1016/j.msec.2017.05.118
B. Mendoza-Novelo, J. L. Mata-Mata, A. Vega-González, J. V. Cauich-Rodríguez, Á. Marcos-Fernández. Synthesis and characterization of protected oligourethanes as crosslinkers of collagen-based scaffolds. Journal of Materials Chemistry B 2 (2014) 2874-2882. https://doi.org/10.1039/c3tb21832e
M. Caldera Villalobos, F. Soriano Corral, J. A. Claudio Rizo. Semi-interpenetración de matrices de colágeno-poliuretano con un polielectrolito biobasado. Avances en Ingeniería Química 4 (2022) 16-19. https://amidiq.com/avances-en-ingenieria-quimica/
J. He, G. Zhang, D. Xiao, H. Chen, S. Yan, X. Wang, J. Yang, E. Wang. Helicity controlled by the chirality of amino acid: Two novel enantiopure chiral 3D architectures containing fivefold interwoven helices. CrystEngComm 14 (2012) 3609-3614. https://doi.org/10.1039/c2ce25038a
X. Gu, K. Zhou, Y. Feng, J. Yao. Morphology control of zeolitic imidazolate framework by addition of amino acid L-histidine. Chemistry Letters 44 (2015) 1080-1082. https://doi.org/10.1246/cl.150395
S. Materazzi, R. Curini, G. D’Ascenzo. Thermoanalytical behaviour of histidine complexes with transition metal ions. Thermochimica Acta 275 (1996) 93-108. https://doi.org/10.1016/0040-6031(95)02718-1
J. A. Claudio-Rizo, I. A. González-Lara, T. E. Flores-Guía, L. F. Cano-Salazar, D. A. Cabrera-Munguía, J. J. Becerra-Rodríguez. Study of the polyacrylate interpenetration in a collagen-polyurethane matrix to prepare novel hydrogels for biomedical applications. International Journal of Biological Macromolecules 156 (2020) 27-39. https://doi.org/10.1016/j.ijbiomac.2020.04.005
C. T. Chasapis, P. S. A. Ntoupa, C. A. Spiliopoulou, M. E. Stefanidou. Recent aspects of the effects of zinc on human health. Archives of Toxicology 94 (2020) 1443-1460. https://doi.org/10.1007/s00204-020-02702-9
A. Deters, E. Schnetz, M. Schmidt, A. Hensel. Effects of zinc histidine and zinc sulfate on natural human keratinocytes. Forschende Komplementarmedizin und Klass. Naturheilkd 10 (2023) 19-25. https://doi.org/10.1159/000069903
M. I. León-Campos, J. A. Claudio-Rizo, N. Rodríguez-Fuentes, D. A. Cabrera-Munguía, J. J. Becerra-Rodríguez, A. Herrera-Guerrero, F. Soriano-Corral. Biocompatible interpenetrating polymeric networks in hydrogel state comprised from jellyfish collagen and polyurethane. Journal of Polymer Research 28 (2021) 291. https://doi.org/10.1007/s10965-021-02654-3
M. Ferrari, M. C. Fornasiero, A. M. Isetta. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. Journal of Immunological Methods 131 (1990) 165-172. https://doi.org/10.1016/0022-1759(90)90187-Z
A. Yadav, V. Saini, S. Arora. MCP-1: Chemoattractant with a role beyond immunity: A review. Clinical Chimica Acta 411 (2010) 1570-1579. https://doi.org/10.1016/j.cca.2010.07.006
S. Singh, D. Anshita, V. Ravichandiran. MCP-1: Function, regulation, and involvement in disease. International Immunopharmacology 101 (2021) 107598. https://doi.org/10.1016/j.intimp.2021.107598
E. P. Amento, L. S. Beck. TGF-β and Wound Healing. Ciba Foundation Symposium 157-Clinical Applications of TGF-β, G. R. Bock and J. Marsh, Eds. Chichester, UK, John Wiley & Sons, 2007, p. 115-136. https://doi.org/10.1002/9780470514061.ch8
W. H. Peranteau, L. Zhang, N. Muvarak, A.T. Badillo, A. Radu, P.W. Zoltick, K.W. Liechty. IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. Journal of Investigation in Dermatology 128 (2008) 1852-1860. https://doi.org/10.1038/sj.jid.5701232
K. Rapala. The effect of tumor necrosis factor-alpha on wound healing. An experimental study. Annales Chirugiae et Gynaecologiae Supplementum 211 (1996) 1-53. https://europepmc.org/article/med/8790842
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Consejo Nacional de Ciencia y Tecnología
Grant numbers FORDECYT-PRONACES/6660/2020