Epirubicin-sensitive detection with a CoWO4/reduced graphene oxide modified screen-printed electrode
Original scientific article
DOI:
https://doi.org/10.5599/admet.2733Keywords:
CoWO4/reduced graphene oxide nanocomposite, chemically modified electrode, urine sample, cancer, drug analysisAbstract
Background and purpose: Because of its antimetabolic and cytotoxic qualities, epirubicin (EP), a crucial chemotherapeutic drug, has been used to treat a number of cancers, including those of the prostate, breast, ovary, stomach, lung, and colon. Experimental approach: In this study, CoWO4/reduced graphene oxide (CoWO4/rGO) nanocomposite was synthesized and characterized by field emission-scanning electron microscopy and energy-dispersive X-ray spectroscopy. To provide a novel sensing platform for EP determination, a screen-printed electrode (SPE) surface was modified using the as-fabricated CoWO4/rGO nanocom¬posite. Key results: Using voltammetric techniques, the electrochemical behavior of the CoWO4/rGO nanocomposite modified SPE (CoWO4/rGO/SPE) for the EP detection was examined. CoWO4/rGO significantly reduced the overpotential of EP redox reaction and increased the rate of electron transfer between the electrode and analyte as compared to bare SPE. EP was quantitatively analyzed using differential pulse voltammetry. Conclusions: It was discovered that the linearity range was 0.01 to 190.0 μM. The sensitivity and limit of detection were 0.1529 μA μM-1 and 0.007 μM, respectively. Additionally, the constructed CoWO4/rGO/SPE sensor's practical applicability was investigated in pharmaceutical samples with good recovery outcomes.
Downloads
References
A.B. Hashkavayi, J.B. Raoof, Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@ SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin, Biosensensors and Bioelectronics 91 (2017) 650–657. https://doi.org/10.1016/j.bios.2017.01.025.
S. Charak, D.K. Jangir, G. Tyagi, R. Mehrotra, Interaction studies of Epirubicin with DNA using spectroscopic techniques, Journal of Molecular Structure, 1000 (2011) 150–154. https://doi.org/10.1016/j.molstruc.2011.06.013.
R. Li, L. Dong, J. Huang, Ultra performance liquid chromatography–tandem mass spectrometry for the determination of epirubicin in human plasma, Analytica Chimica Acta 546 (2005) 167–173. https://doi.org/10.1016/j.aca.2005.04.073.
E.G. Mayhew, D. Lasic, S. Babbar, F.J. Martin, Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid, International journal of cancer 51 (1992) 302–309. https://doi.org/10.1002/ijc.2910510221.
T. Liu, Y. Liao, H. Tao, J. Zeng, G. Wang, Z. Yang, Y. Wang, Y. Xiao, J. Zhou, X. Wang, RNA interference-mediated depletion of TRPM8 enhances the efficacy of epirubicin chemotherapy in prostate cancer LNCaP and PC3 cells, Oncology Letters 15 (2018) 4129–4136. https://doi.org/10.3892/ol.2018.7847.
A. Erdem, M. Ozsoz, Interaction of the anticancer drug epirubicin with DNA, Analytica Chimica Acta 437 (2001) 107–114. https://doi.org/10.1016/S0003-2670(01)00942-4.
H. Roché, P. Fumoleau,M. Spielmann, J.-L. Canon, T. Delozier, D. Serin,M. Symann, P. Kerbrat, P. Soulié, F. Eichler, Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 Trial, Journal of Clinical Oncology 24 (2006) 5664–5671. https://doi.org/10.1200/JCO.2006.07.3916.
A.F. Okines, S.E. Ashley, D. Cunningham, J. Oates, A. Turner, J. Webb, C. Saffery, Y. Jo Chua, I. Chau, Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for advanced esophagogastric cancer: dose-finding study for the prospective multicenter, randomized, phase II/III REAL-3 trial, Journal of clinical oncology 28 (2010) 3945–3950. https://doi.org/10.1200/JCO.2010.29.284.
M. Hasanzadeh, N. Shadjou, Pharmacogenomic study using bio-and nanobioelectrochemistry: drug–DNA interaction, Materials Science and Engineering: C 61 (2016) 1002–1017. https://doi.org/10.1016/j.msec.2015.12.020.
A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh, A. Abbaspourrad, S. Agarwal, V.K. Gupta, A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations, Sensors and actuators b: chemical, 284 (2019) 568–574. https://doi.org/10.1016/j.snb.2018.12.164.
R.A. de Boer, J.-S. Hulot, C.G. Tocchetti, J.P. Aboumsallem, P. Ameri, S.D. Anker, J. Bauersachs, E. Bertero, A.J.S. Coats, J. ˇCelutkien.e, others, Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the Translational Research Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC), European journal of heart failure 22 (2020) 2272-2289. https://doi.org/10.1002/ejhf.2029.
N. Treder, O. Maliszewska, I. Oledzka, P. Kowalski, N. Miekus, T. Baczek, E. Bien, M.A. Krawczyk, E. Adamkiewicz-Droiynska, A. Plenis, Development and validation of a high-performance liquid chromatographic method with a fluorescence detector for the analysis of epirubicin in human urine and plasma, and its application in drug monitoring, Journal of Chromatography B 1136 (2020) 121910. https://doi.org/10.1016/j.jchromb.2019.121910.
K.E. Maudens, C.P. Stove, V.F. Cocquyt, H. Denys, W.E. Lambert, Development and validation of a liquid chromatographic method for the simultaneous determination of four anthracyclines and their respective 13-S-dihydro metabolites in plasma and saliva, Journal of Chromatography B 877 (2009) 3907–3915. https://doi.org/10.1016/j.jchromb.2009.09.044.
P. Gopinath, S. Veluswami, R. Thangarajan, G. Gopisetty, RP-HPLC-UV method for estimation of fluorouracil–epirubicin–cyclophosphamide and their metabolite mixtures in human plasma (matrix), Journal of Chromatographic Science 56 (2018) 488–497. https://doi.org/10.1093/chromsci/bmy020.
C. Sottani, P. Rinaldi, E. Leoni, G. Poggi, C. Teragni, A. Delmonte, C. Minoia, Simultaneous determination of cyclophosphamide, ifosfamide, doxorubicin, epirubicin and daunorubicin in human urine using high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry: bioanalytical method validation. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry, 22 (2008) 2645-2659.https://doi.org/10.1002/rcm.3657.
D.M. Souza, J.F. Reichert, A.F. Martins, A simultaneous determination of anti-cancer drugs in hospital effluent by DLLME HPLC-FLD, together with a risk assessment, Chemosphere 201 (2018) 178–188. https://doi.org/10.1016/j.chemosphere.2018.02.164.
N. Guichard, M. Ogereau, L. Falaschi, S. Rudaz, J. Schappler, P. Bonnabry, S. Fleury-Souverain, Determination of 16 antineoplastic drugs by capillary electrophoresis with UV detection: Applications in quality control, Electrophoresis 39 (2018) 2512–2520. https://doi.org/10.1002/elps.201800007.
G. Whitaker, A. Lillquist, S.A. Pasas, R. O’Connor, F. Regan, C.E. Lunte, M. R. Smyth, CE-LIF method for the separation of anthracyclines: application to protein binding analysis in plasma using ultrafiltration, Journal of separation science 31 (2008) 1828–1833. https://doi.org/10.1002/jssc.200700629.
I. Eman, A.F. El-Yazbi, An eco-friendly stability-indicating spectrofluorimetric method for the determination of two anticancer stereoisomer drugs in their pharmaceutical preparations following micellar enhancement: Application to kinetic degradation studies, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 163 (2016) 145–153. https://doi.org/10.1016/j.saa.2016.03.034.
J. Mo, L. Shen, Q. Xu, J. Zeng, J. Sha, T. Hu, K. Bi, Y. Chen, An Nd3+-sensitized upconversion fluorescent sensor for epirubicin detection, Nanomaterials 9 (2019) 1700. https://doi.org/10.3390/nano9121700.
A.B. Hashkavayi, J.B. Raoof, Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@ SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin, Biosensors and Bioelectronics 91 (2017) 650–657. https://doi.org/10.1016/j.bios.2017.01.025.
H. Zhang, Fabrication of a single-walled carbon nanotube-modified glassy carbon electrode and its application in the electrochemical determination of epirubicin, Journal of Nanoparticle Research 6 (2004) 665–669. https://doi.org/10.1007/s11051-004-3723-7.
S. Tajik, H. Beitollahi, S. A. Ahmadi, M. B. Askari, A.Di Bartolomeo, Screen-printed electrode surface modification with NiCo2O4/RGO nanocomposite for hydroxylamine detection. Nanomaterials, 11 (2021) 3208. https://doi.org/10.3390/nano11123208.
H. Beitollahi, F. Garkani-Nejad, S. Tajik, M. R. Ganjali, Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@ SiO2 nanocomposite. Iranian Journal of Pharmaceutical Research: IJPR, 18 (2019). 80-90. PMCID: PMC6487427, PMID: 31089346
R.M. Silva, A.D. da Silva, J.R. Camargo, B.S. de Castro, L.M. Meireles, P.S. Silva, T.A. Silva, Carbon nanomaterials-based screen-printed electrodes for sensing applications, Biosensors 13 (2023) 453. https://doi.org/10.3390/bios13040453.
X. Liu, Y. Yao, Y. Ying, J. Ping, Recent advances in nanomaterial-enabled screen- printed electrochemical sensors for heavy metal detection, TrAC Trends in Analytical Chemistry 115 (2019) 187–202. https://doi.org/10.1016/j.trac.2019.03.021.
H. Beitollahi, J.B. Raoof, R. Hosseinzadeh, Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode. Analytical Sciences, 27 (2011) 991-991. https://doi.org/10.2116/analsci.27.991.
Z. Zhang, H. Karimi-Maleh, In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324 (2023) 138302. https://doi.org/10.1016/j.chemosphere.2023.138302
S.E. Baghbamidi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1, 2, 3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol. International Journal of Electrochemical Science, 11 (2016) 10874-10883. https://doi.org/10.20964/2016.12.92.
Z. Zhang, H. Karimi-Maleh, Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal, Advanced Composites and Hybrid Materials 6 (2023) 68. https://doi.org/10.1007/s42114-023-00652-1.
S.Z. Mohammadi, H. Beitollahi, E. Bani Asadi, Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode. Environmental Monitoring and Assessment, 187 (2015) 1-10. https://doi.org/10.1007/s10661-015-4309-9.
H.M. Moghaddam, H. Beitollahi, S. Tajik, S. Jahani, H. Khabazzadeh, R. Alizadeh, Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor. Russian Journal of Electrochemistry, 53 (2017) 452-460. https://doi.org/10.1134/S1023193517050123.
S. Zheng, N. Zhang, L. Li, T. Liu, Y. Zhang, J. Tang, S. Su, Synthesis of graphene oxide-coupled CoNi bimetallic MOF nanocomposites for the simultaneous analysis of catechol and hydroquinone. Sensors 23 (2023) 6957. https://doi.org/10.3390/s23156957.
M. Shahsavari, M. Mortazavi, S. Tajik, I. Sheikhshoaie, H. Beitollahi, Synthesis and characterization of GO/ZIF-67 nanocomposite: investigation of catalytic activity for the determination of epinine in the presence of dobutamine. Micromachines, 13 (2022) 88. https://doi.org/10.3390/mi13010088.
J. Mei, J. Han, F. Wu, Q. Pan, F. Zheng, J. Jiang, Q. Li, SnS@C nanoparticles anchored on graphene oxide as high-performance anode materials for lithium-ion batteries. Frontiers in Chemistry 10 (2023) 1105997. https://doi.org/10.3389/fchem.2022.1105997.
S.E. Baghbamidi, H. Beitollahi, S. Tajik, Graphene oxide nano-sheets/ferrocene derivative modified carbon paste electrode as an electrochemical sensor for determination of hydrazine. Analytical & Bioanalytical Electrochemistry, 6 (2014) 634-645.
C. Bhuvaneswari, A. Elangovan, C. Sharmila, K. Sudha, G. Arivazhagan, Fabrication of cobalt tungstate/N-rGO nanocomposite: Application towards the detection of antibiotic drug-Furazolidone. Colloids and Surfaces A: Physicochemical and Engineering Aspects 656 (2023) 130299. https://doi.org/10.1016/j.colsurfa.2022.130299.
T. Nandagopal, G. Balaji, S. Vadivel, Tuning the morphology and size of NiMoO4 nanoparticles anchored on reduced graphene oxide (rGO) nanosheets: The optimized hybrid electrodes for high energy density asymmetric supercapacitors. Journal of Electroanalytical Chemistry 928 (2023) 116944. https://doi.org/10.1016/j.jelechem.2022.116944.
L.W. Bai, Y.F. Shi, X. Zhang, X.B. Liu, F. Wu, C. Liu, W.B. Lu, A two-dimensional NiMoO4 nanowire electrode for the sensitive determination of hydroquinone in four types of actual water samples, Journal of Analysis and Testing 6 (2022) 382–392. https://doi.org/10.1007/s41664-022-00236-w.
K.S. Ranjith, A.E. Vilian, S.M. Ghoreishian, R. Umapathi, S.K. Hwang, C.W. Oh, Y.K. Han, Hybridized 1D–2D MnMoO4–MXene nanocomposites as high-performing electrochemical sensing platform for the sensitive detection of dihydroxybenzene isomers in wastewater samples, Journal of Hazardous Materials 421 (2022) 126775. https://doi.org/10.1016/j.jhazmat.2021.126775.
C. Ling, L. Zhou, H. Jia, First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst, RSC advances 4 (2014) 24692–24697. https://doi.org/10.1039/C4RA03893B.
H. Jia, J. Stark, L. Zhou, C. Ling, T. Sekito, Z. Markin, Different catalytic behavior of amorphous and crystalline cobalt tungstate for electrochemical water oxidation, RSC advances 2 (2012) 10874–10881. https://doi.org/10.1039/C2RA21993J
J. Zhang, J. Wei, J. Li, M. Xiahou, Z. Sun, A. Cao, Y. Chen, Delicate construction of Z-scheme heterojunction photocatalysts by ZnS quantum dots wrapped CoWO4 nanoparticles for highly efficient environmental remediation. ACS Applied Nano Materials 7 (2024) 20101–20113. https://doi.org/10.3390/mi15111360.
B. Sriram, S. Gouthaman, S.F. Wang, Y.F. Hsu, Cobalt molybdate hollow spheres decorated graphitic carbon nitride sheets for electrochemical sensing of dimetridazole, Food Chemistry 430 (2024) 136853. https://doi.org/10.1016/j.foodchem.2023.136853.
Y. Li, J. Zheng, J. Yan, Y. Liu, M. Guo, Y. Zhang, C. Meng, La-doped NiWO4 coupled with reduced graphene oxide for effective electrochemical determination of diphenylamine. Dalton Transactions 52 (2023) 12808–12818. https://doi.org/10.1039/D3DT02524A.
S. Ramanathan, A. Thamilselvan, N. Radhika, D. Padmanabhan, A. Durairaj, A. Obadiah, S. Vasanthkumar, Development of rutin-rGO/TiO2 nanocomposite for electrochemical detection and photocatalytic removal of 2,4-DCP, Journal of the Iranian Chemical Society 18 (2021) 2457–2472. https://doi.org/10.1007/s13738-021-02205-z.
R. Kumar, T. Bhuvana, A. Sharma, Nickel tungstate–graphene nanocomposite for simultaneous electrochemical detection of heavy metal ions with application to complex aqueous media. RSC advances 7 (2017) 42146–42158. https://doi.org/10.1039/C7RA08047F.
X. Xu, J. Shen, N. Li, M. Ye, Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochimica Acta 150 (2014) 23–34. https://doi.org/10.1016/j.electacta.2014.10.139.
Published
Issue
Section
License
Copyright (c) 2025 Somayeh Tajik, Razieh Moghimian, Hadi Beitollahi

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Funding data
-
Kerman University of Medical Sciences
Grant numbers 403000792;IR.KMU.REC.1403.437