An electrochemical sensor based on a modified glassy carbon electrode for detection of epinephrine in the presence of theophylline
DOI:
https://doi.org/10.5599/admet.2082Keywords:
CeO2-ZnO nanocomposite, voltammetry, sensing platform, modified electrodeAbstract
Background and purpose: Neurotransmitters are chemical messengers that enhance and balance signals between cells and target cells in the body. They are vital to the body's ability to function. Epinephrine is one of the most essential catecholamine neurotransmitters with an important biological and pharmacological role in the mammalian central nervous system. Therefore, it is very important to develop sensitive, simple, and fast methods for the determination of this compound. Experimental approach: In the present work, a glassy carbon electrode (GCE) modified with the cerium oxide-zinc oxide (CeO2-ZnO) nanocomposite (CeO2-ZnO/GCE) was developed for the sensitive and quick detection of epinephrine. The CeO2-ZnO nanocomposite was prepared by hydrothermal method. Electrochemical methods such as voltammetry and chronoamperometry techniques were used to investigate the performance of the developed sensor. Key results: The resulting CeO2-ZnO/GCE showed a remarkable response towards the determination of epinephrine. The electrochemical sensor demonstrated a wide dynamic linear range from 0.1 to 900.0 μM for analysis of epinephrine. The LOD equalled 0.03 μM for epinephrine. In addition, the electrochemical sensor had good feasibility for concurrent detection of epinephrine and theophylline. Furthermore, experimental outputs indicated that the oxidation peaks of epinephrine and theophylline were separated by a 685 mV difference between the two peaks in PBS at a pH of 7.0. Also, an electrochemical sensor has been employed to analyse epinephrine in real samples (urine and epinephrine Injection). Conclusion: The good and acceptable analytical performance of the developed sensor can provide a promising tool for the analysis of epinephrine in real samples.
Downloads
References
P. Hernandez, I. Sanchez, F. Paton, L. Hernandez. Cyclic voltammetry determination of epinephrine with a carbon fiber ultramicroelectrode. Talanta 46 (1998) 985-991. https://doi.org/10.1016/S0039-9140(97)00353-6
Y. Su, C. Chen, X. Hou, J. Zhang. A new capillary electrophoresis-direct chemiluminescence system for the determination of epinephrine and mechanism study. Analytical Methods 3 (2011) 2893-2897. https://doi.org/10.1039/C1AY05435J
H.S. Wang, D.Q. Huang, R.M. Liu. Study on the electrochemical behavior of epinephrine at a poly(3-methylthiophene)-modified glassy carbon electrode. Journal of Electroanalytical Chemistry 570 (2004) 83-90. https://doi.org/10.1016/j.jelechem.2004.03.019
D.M. Fouad, W.A. El-Said. (2016) Selective electrochemical detection of epinephrine using gold nanoporous film. Journal of Nanomaterials (2016) Article ID 6194230 850316. http://dx.doi.org/10.1155/2016/6194230
S.A.H. Al-Ameri. Spectrophotometric determination of adrenaline in pharmaceutical preparations. Arabian Journal of Chemistry 9 (2016) 1000-1004. https://doi.org/10.1016/j.arabjc.2011.10.001
H. Kang, Y. Jin, Q. Han. Electrochemical detection of epinephrine using an L-glutamic acid functionalized graphene modified electrode. Analytical Letters 47 (2014) 1552-1563. https://doi.org/10.1080/00032719.2013.876541
J. Li, X. Wang, H. Duan, Y. Wang, C. Luo. Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites. Materials Science and Engineering C 64 (2016) 391-398. https://doi.org/10.1016/j.msec.2016.04.003
A. Carlsson, L.O. Hansson, N. Waters, M.L. Carlsson. Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications. Life Sciences 61 (1997) 75-94. https://doi.org/10.1016/S0024-3205(97)00228-2
R. Pal, M.J. Chaudhary, P.C. Tiwari, S. Babu, K. Pant. Protective role of theophylline and their interaction with nitric oxide (NO) in adjuvant-induced rheumatoid arthritis in rats. International Immunopharmacology 29 (2015) 854-862. https://doi.org/10.1016/j.intimp.2015.08.031
L.Y. Hu, L.X. Chen, M.T. Liu, A.J. Wang, L.J. Wu, J.J. Feng. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr (VI) reduction. Journal of Colloid and Interface Science 493 (2017) 94-102. https://doi.org/10.1016/j.jcis.2016.12.068
M.Q. Al Abachi, H. Hadi. A new kinetic and thermodynamic study of spectrophotometric method for determination of adrenaline in its pharmaceutical formulations. Pharmaceutical Chemistry Journal 48 (2014) 558-563. https://doi.org/10.1007/s11094-014-1151-2
A. Mishra, A. Upadhyay, A. Patra, S. Chaudhury, P. Chattopadhyay. Simultaneous determination of epinephrine and norepinephrine by high performance liquid chromatography. Scientia Pharmaceutica 77 (2009) 367-374. https://doi.org/10.3797/scipharm.0902-07
P. Chen, J. Shen, C. Wang, Y. Wei. Selective extraction of theophylline from plasma by copper-doped magnetic microspheres prior to its quantification by HPLC. Microchimica Acta 185 (2018) 113. https://doi.org/10.1007/s00604-017-2667-4
P. Britz-Mckibbin, A.R. Kranack, A. Paprica, D.D. Chen. Quantitative assay for epinephrine from dental anesthetic solutions by capillary electrophoresis. Analyst 123 (1998) 1461-1463. https://doi.org/10.1039/A800772A
G.H. Ragab, H. Nohta, K. Masaaki, Y. Ohkura. Chemiluminescence determination of catecholamines in human blood plasma using 1,2-bis(3-chlorophenyl)eth-ylenediamine as pre-column derivatizing reagent for liquid chromatography. Analytica Chimica Acta 403 (2000) 155-160. https://doi.org/10.1016/S0003-2670(99)00637-6
M.X. Zhou, C.Y. Guan, G. Chen, X.Y. Xie, S.H. Wu. Determination of theophylline concentration in serum by chemiluminescent immunoassay. Journal of Zhejiang University Science B 6 (2005) 1148-1152. https://doi.org/10.1631/jzus.2005.B1148
P. Liu, R. Liu, G. Guan, C. Jiang, S. Wang, Z. Zhang. Surface-enhanced Raman scattering sensor for theophylline determination by molecular imprinting on silver nanoparticles. Analyst 136 (2011) 4152-4158. https://doi.org/10.1039/C1AN15318H
K. Saka, K. Uemura, K. Shintani-Ishida, K.I. Yoshida. Acetic acid improves the sensitivity of theophylline analysis by gas chromatography-mass spectrometry. Journal of Chromatography B 846 (2007) 240-244. https://doi.org/10.1016/j.jchromb.2006.09.008
B. Mekassa, M. Tessema, B.S. Chandravanshi, P.G. Baker, F.N. Muya. Sensitive electrochemical determination of epinephrine at poly (L-aspartic acid)/electrochemically reduced graphene oxide modified electrode by square wave voltammetry in pharmaceutics. Journal of Electroanalytical Chemistry 807 (2017) 145-153. https://doi.org/10.1016/j.jelechem.2017.11.045
F. Cui, X. Zhang. Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. Journal of Electroanalytical Chemistry 669 (2012) 35-41. https://doi.org/10.1016/j.jelechem.2012.01.021
S.D. Bukkitgar, N.P. Shetti. Electrochemical behavior of theophylline at methylene blue dye modified electrode and its analytical application. Materials Today: Proceedings 5 (2018) 21474-21481. https://doi.org/10.1016/j.matpr.2018.06.557
X. Zhuang, D. Chen, S. Wang, H. Liu, L. Chen. Manganese dioxide nanosheet-decorated ionic liquid-functionalized graphene for electrochemical theophylline biosensing. Sensors & Actuators, B: Chemical 251 (2017) 185-191. https://doi.org/10.1016/j.snb.2017.05.049
H. Karimi-Maleh, Y. Liu, Z. Li, R. Darabi, Y. Orooji, C. Karaman, F. Karimi, M. Baghayeri, J. Rouhi, L. Fu. Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 332 (2023) 138815. https://doi.org/10.1016/j.chemosphere.2023.138815
F. Garkani Nejad, S. Tajik, H. Beitollahi, I. Sheikhshoaie, Magnetic nanomaterials based electrochemical (bio) sensors for food analysis. Talanta 228 (2021) 122075. https://doi.org/10.1016/j.talanta.2020.122075
S. Li, J. Fan, S. Li, Y. Ma, J. Wu, H. Jin, Z. Guo. In situ-grown Co3O4 nanorods on carbon cloth for efficient electrocatalytic oxidation of urea. Journal of Nanostructure in Chemistry 11 (2021) 735-749. https://doi.org/10.1007/s40097-021-00441-6
Z. Zhang, H. Karimi-Maleh. In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324 (2023) 138302. https://doi.org/10.1016/j.chemosphere.2023.138302
H.E. Zittel, F.J. Miller. A Glassy-Carbon Electrode for Voltammetry. Analytical Chemistry 37 (1965) 200-203. https://doi.org/10.1021/ac60221a006
H. Pyman. Design and fabrication of modified DNA-Gp nano-biocomposite electrode for industrial dye measurement and optical confirmation. Progress in Chemical and Biochemical Research 5 (2022) 391-405. https://doi.org/10.22034/pcbr.2022.367576.1236
S. Bilge, B. Dogan-Topal, E.B. Atici, A. S.A. Sýnað. Rod-like CuO nanoparticles/waste masks carbon modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-cancer drug pazopanib in biological and pharmaceutical samples. Sensors & Actuators, B: Chemical 343 (2021) 130109. https://doi.org/10.1016/j.snb.2021.130109
Y.Y. Li, F. Guo, J. Yang, J.F. Ma. Efficient detection of metronidazole by a glassy carbon electrode modified with a composite of a cyclotriveratrylene-based metal-organic framework and multi-walled carbon nanotubes. Food Chemistry 425 (2023) 136482. https://doi.org/10.1016/j.foodchem.2023.136482
H. Beitollahi, S. Tajik, S.Z. Mohammadi, M. Baghayeri, Voltammetric determination of hydroxylamine in water samples using a 1-benzyl-4-ferrocenyl-1H-[1, 2, 3]-triazole/carbon nanotube-modified glassy carbon electrode. Ionics 20 (2014) 571-579. https://doi.org/10.1007/s11581-013-1004-0
Z. Zhang, H. Karimi-Maleh. Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal. Advanced Composites and Hybrid Materials 6 (2023) 68. https://doi.org/10.1007/s42114-023-00652-1
G.K. Jayaprakash, B.K. Swamy, H.N.G. Ramírez, M.T. Ekanthappa, R. Flores-Moreno. Quantum chemical and electrochemical studies of lysine modified carbon paste electrode surfaces for sensing dopamine. New Journal of Chemistry 42 (2018) 4501-4506. https://doi.org/10.1039/C7NJ04998F
J. Zu, W. Jing, X. Dai, Z. Feng, J. Sun, Q. Tan, Y. Liu. A nano rod-like á-MnO2 supported on carbon nanotubes modified separator inhibiting polysulfide shuttle in Li-S batteries. Journal of Alloys and Compounds 933 (2023) 167767. https://doi.org/10.1016/j.jallcom.2022.167767
C. Karaman, O. Karaman, P.L. Show, Y. Orooji, H. Karimi-Maleh. Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: equilibrium, kinetics, thermodynamics and artificial neural network modeling. Environmental Research 207 (2021) 112156. https://doi.org/10.1016/j.envres.2021.112156
X. Fang, J. Cao, A. Shen. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. Journal of Drug Delivery Science and Technology 57 (2020) 101662. https://doi.org/10.1016/j.jddst.2020.101662
N.B. Ashoka, B.K. Swamy, H. Jayadevappa, S.C. Sharma. Simultaneous electroanalysis of dopamine, paracetamol and folic acid using TiO2-WO3 nanoparticle modified carbon paste electrode. Journal of Electroanalytical Chemistry 859 (2020) 113819. https://doi.org/10.1016/j.jelechem.2020.113819
H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. Journal of Colloid and Interface Science 554 (2019) 603-610. https://doi.org/10.1016/j.jcis.2019.07.047
S. Tajik, H. Beitollahi, F. Garkani Nejad, M. Safaei, K. Zhang, Q. Van Le, R.S. Varma, H.W. Jang, M. Shokouhimehr. Developments and applications of nanomaterial-based carbon paste electrodes. RSC Advances 10 (2020) 21561-21581. https://doi.org/10.1039/D0RA03672B
M. Saha, S. Das. Electrochemical detection of L-serine and L-phenylalanine at bamboo charcoal-carbon nanosphere electrode. Journal of Nanostructure in Chemistry 4 (2014) 102. https://doi.org/10.1007/s40097-014-0102-5
C. Hu, Z. Zhang, H. Liu, P. Gao, Z.L. Wang. Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles. Nanotechnology 17 (2006) 5983-5987. https://doi.org/10.1088/0957-4484/17/24/013/meta
A. Vantomme, Z.Y. Yuan, G. Du, B.L. Su. Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods. Langmuir 21 (2005) 1132-1135. https://doi.org/10.1021/la047751p
V. Gerbreders, M. Krasovska, I. Mihailova, A. Ogurcovs, E. Sledevskis, A. Gerbreders, E. Tamanis, I. Kokina, I. Plaksenkova. ZnO nanostructure-based electrochemical biosensor for Trichinella DNA detection. Sensing and Bio-Sensing Research 23 (2019) 100276. https://doi.org/10.1016/j.sbsr.2019.100276
S. Dong, D. Zhang, H. Cui, T. Huang. ZnO/porous carbon composite from a mixedligand MOF for ultrasensitive electrochemical immunosensing of C-reactive protein. Sensors & Actuators, B: Chemical 284 (2019) 354-361. https://doi.org/10.1016/j.snb.2018.12.150
P. Baghbanpoor, H. Beitollahi, M.R. Shishehbore, A. Sheibani. Voltammetric determination of methionine in the presence of tryptophan based on a CeO2-ZnO nanocomposite/ethyl 2-(4-ferrocenyl [1, 2, 3] triazol-1-yl) acetate/1-butyl-3-methylimidazolium hexafluorophosphate modified carbon paste electrode. Journal of the Iranian Chemical Society 19 (2022) 4545-4554. https://doi.org/10.1007/s13738-022-02620-w
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.