A simple and fast flow injection amperometry for the determination of methimazole in pharmaceutical preparations using an unmodified boron-doped diamond electrode

Authors

  • Adison Meoipun Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23 Rd. Wattana, Bangkok, 10110, Thailand
  • Kantima Kaewjua Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23 Rd. Wattana, Bangkok, 10110, Thailand https://orcid.org/0000-0003-4051-3321
  • Orawon Chailapakul Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
  • Weena Siangproh Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23 Rd. Wattana, Bangkok, 10110, Thailand https://orcid.org/0000-0003-4051-3321

DOI:

https://doi.org/10.5599/admet.1584

Keywords:

Methimazole, boron-doped diamond thin film electrode, flow injection analysis, drug formulations, amperometry
Methimazole FIA

Abstract

In this work, an automated flow injection analysis (FIA) connected to a boron-doped diamond electrode (BDDE) was originally developed for the analysis of methimazole in pharmaceutical preparations. At a modification-free BDDE, methimazole was easilly oxidized. For the analysis of the mechanisms occurring at the electrode surface, cyclic voltammetry was employed to evaluate the impact of fundamental experimental parameters, such as pH and scan rate, on the BDDE response. For the quantitative detection, the FIA amperometric approach was constructed and used as a fast and sensitive method. The suggested approach provided a broad linear range of 0.5–50 µmol/L and a low detection limit of 10 nmol/L (signal-to-noise ratio = 3). Furthermore, the BDDE was successfully utilized to quantify methimazole in genuine samples from a variety of medicines, and its performance remained steady after more than 50 tests. The findings of amperometric measurements exhibit excellent repeatability, with relative standard deviations of less than 3.9 and 4.7 % for intra-day and inter-day, respectively. The findings indicated that, compared with traditional approaches, the suggested method has the following advantages: quick analysis time, simplicity, highly sensitive output, and no need for complicated operational processes.

Downloads

Download data is not yet available.

References

B. Marchant, J.F. Lees, W.D. Alexander. Antithyroid drugs. Pharmacology & Therapeutics, Part B: General and Systematic Pharmacology 3 (1978) 305-348. https://doi.org/10.1016/S0306-039X(78)80001-4.

H. Nakamura, J.Y. Noh, K. Itoh, S. Fukata, A. Miyauchi, N. Hamada. Comparison of methimazole and propylthiouracil in patients with hyperthyroidism caused by Graves’ disease. The Journal of Clinical Endocrinology & Metabolism 92 (2007) 2157-2162. https://doi.org/10.1210/jc.2006-2135.

Methimazole, https://www.medicinenet.com/methimazole/article.htm) (accessed August 17, 2022).

M. Baretić, S. Balić, G. Gudelj. Miastenična kriza kao nuspojava liječenja metimazolom: Prikaz slučaja. Acta Clinica Croatica 49 (2010) 67-71. https://hrcak.srce.hr/56826.

M. Aletrari, P. Kanari, D. Partassides, E. Loizou. Study of the British Pharmacopeia method on methimazole (thiamazole) content in carbimazole tablets. Journal of pharmaceutical and biomedical analysis 16 (1998) 785-792. https://doi.org/10.1016/S0731-7085(97)00119-2.

Y. Ito, H. Sakai, H. Nagao, R. Suzuki, M. Odawara, K. Minato. Development of a high-performance liquid chromatography–tandem mass spectrometric method for the determination of Methimazole in human blood matrices. Journal of Chromatography B 1144 (2020) 122083. https://doi.org/10.1016/j.jchromb.2020.122083.

G. Moretti, P. Betto, P. Cammarata, F. Fracassi, M. Giambenedetti, A. Borghese. Determination of thyreostatic residues in cattle plasma by high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences and Applications 616 (1993) 291-296. https://doi.org/10.1016/0378-4347(93)80397-M.

R. Zakrzewski. Determination of methimazole in urine with the iodine-azide detection system following its separation by reversed-phase high-performance liquid chromatography. Journal of Chromatography B 869 (2008) 67-74. https://doi.org/10.1016/j.jchromb.2008.05.021.

M. El-Bardicy, Y. El-Saharty, M. Tawakkol. Determination of carbimazole and methimazole by first and third derivative spectrophotometry. Spectroscopy letters 24 (1991) 1079-1095. https://doi.org/-10.1080/¬00387019108018174.

C. Sanchez-Pedreno, M. Albero, M. Garcia, V. Rodenas. Flow-injection spectrophotometric determination of carbimazole and methimazole. Analytica Chimica Acta 308 (1995) 457-461. https://doi.org/10.1016/0003-2670(94)00606-M.

M.S. García, M.I. Albero, C. Sánchez-Pedreño, L. Tobal. Kinetic determination of carbimazole, methimazole and propylthiouracil in pharmaceuticals, animal feed and animal livers. Analyst 120 (1995) 129-133. https://doi.org/10.1039/AN9952000129.

S. Pinzauti, G. Papeschi, E. La Porta. Potentiometric titration of thiols, cationic surfactants and halides using a solid-state silver-silver sulphide electrode. Journal of pharmaceutical and biomedical analysis 1 (1983) 47-53. https://doi.org/10.1016/0731-7085(83)80007-7.

S. Zhang, W.-l. Sun, W. Zhang, W.-y. Qi, L.-t. Jin, K. Yamamoto, S. Tao, J. Jin. Determination of thiocompounds by liquid chromatography with amperometric detection at a Nafion/indium hexa-cyanoferrate film modified electrode. Analytica Chimica Acta 386 (1999) 21-30. https://doi.org/10.1016/S0003-2670(98)00799-5.

A. Wang, L. Zhang, S. Zhang, Y. Fang. Determination of thiols following their separation by CZE with amperometric detection at a carbon electrode. Journal of pharmaceutical and biomedical analysis 23 (2000) 429-436. https://doi.org/10.1016/S0731-7085(00)00326-5.

B. Uslu, S.A. Ozkan. Electroanalytical methods for the determination of pharmaceuticals: a review of recent trends and developments. Analytical letters 44 (2011) 2644-2702. https://doi.org/10.1080/¬00032719.2011.553010.

S.A. Özkan, B. Uslu, H.Y. Aboul-Enein. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Critical reviews in analytical chemistry 33 (2003) 155-181. https://doi.org/10.1080/713609162.

W. Yazhen. Electrochemical determination of methimazole based on the acetylene black/chitosan film electrode and its application to rat serum samples. Bioelectrochemistry 81 (2011) 86-90. https://doi.org/10.1016/j.bioelechem.2011.04.001.

X. Xi, L. Ming, J. Liu. Electrochemical determination of thiamazole at a multi-wall carbon nanotube modified glassy carbon electrode. Journal of Applied Electrochemistry 40 (2010) 1449-1454. https://doi.org/10.1007/s10800-010-0122-x.

A. Kutluay, M. Aslanoglu. Multi-walled carbon nanotubes/electro-copolymerized cobalt nanoparticles-poly (pivalic acid) composite film coated glassy carbon electrode for the determination of methimazole. Sensors and Actuators B: Chemical 171 (2012) 1216-1221. https://doi.org/10.1016/¬j.snb.2012.06.083.

J. Fahimeh, M. Loghman, R. Mahmoud. Electrocatalytic determination of anti-hyperthyroid drug, methimazole, using a modified carbon-paste electrode. African Journal of Pharmacy and Pharmacology 7 (2013) 269-274. https://doi.org/10.5897/AJPP12.717.

S. Shahrokhian, M. Ghalkhani. Voltammetric determination of methimazole using a carbon paste electrode modified with a schiff base complex of cobalt. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 20 (2008) 1061-1066. https://doi.org/10.1002/elan.200704149

P. Norouzi, V.K. Gupta, B. Larijani, M.R. Ganjali, F. Faridbod. A new Methimazole sensor based on nanocomposite of CdS NPs–RGO/IL–carbon paste electrode using differential FFT continuous linear sweep voltammetry. Talanta 127 (2014) 94-99. https://doi.org/10.1016/j.talanta.2014.03.061.

M. Fouladgar, S. Mohammadzadeh. Determination of methimazole on a multiwall carbon nanotube titanium dioxide nanoparticle paste electrode. Analytical letters 47 (2014) 763-777. https://doi.org/10.1080/00032719.2013.855782.

J. Thangphatthanarungruang, A. Lomae, O. Chailapakul, S. Chaiyo, W. Siangproh. A Low‐cost Paper‐based Diamond Electrode for Trace Copper Analysis at On‐site Environmental Area. Electroanalysis 33 (2021) 226-232. https://doi.org/10.1002/elan.202060305.

A. Lomae, S. Nantaphol, T. Kondo, O. Chailapakul, W. Siangproh, J. Panchompoo. Simultaneous determination of β-agonists by UHPLC coupled with electrochemical detection based on palladium nanoparticles modified BDD electrode. Journal of Electroanalytical Chemistry 840 (2019) 439-448. https://doi.org/10.1016/j.jelechem.2019.04.003.

K. Pungjunun, S. Chaiyo, I. Jantrahong, S. Nantaphol, W. Siangproh, O. Chailapakul. Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchimica Acta 185 (2018) 1-8. https://doi.org/10.1007/¬s00604-018-2821-7.

S. Seyidahmet, F. Dönmez, Y. Yardım, Z. Şentürk. Simple, rapid, and sensitive electrochemical determination of antithyroid drug methimazole using a boron-doped diamond electrode. Journal of the Iranian Chemical Society 16 (2019) 913-920. https://doi.org/10.1007/s13738-018-1562-1.

T. Yano, D. Tryk, K. Hashimoto, A. Fujishima. Electrochemical behavior of highly conductive boron‐doped diamond electrodes for oxygen reduction in alkaline solution. Journal of the Electrochemical Society 145 (1998) 1870. https://doi.org/10.1149/1.1838569

A. Economou, P.D. Tzanavaras, M. Notou, D.G. Themelis. Determination of methimazole and carbimazole by flow-injection with chemiluminescence detection based on the inhibition of the Cu (II)-catalysed luminol–hydrogen peroxide reaction. Analytica Chimica Acta 505 (2004) 129-133. https://doi.org/10.1016/S0003-2670(03)00176-4.

J. Sun, C. Zheng, X. Xiao, L. Niu, T. You, E. Wang. Electrochemical detection of methimazole by capillary electrophoresis at a carbon fiber microdisk electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 17 (2005) 1675-1680. https://doi.org/¬10.1002/¬elan.200403272.

N.A. Martinez, G.A. Messina, F.A. Bertolino, E. Salinas, J. Raba. Screen-printed enzymatic biosensor modified with carbon nanotube for the methimazole determination in pharmaceuticals formulations. Sensors and Actuators B: Chemical 133 (2008) 256-262. https://doi.org/10.1016/j.snb.2008.02.025.

R. Zakrzewski. Determination of methimazole in pharmaceutical preparations using an HPLC method coupled with an iodine-azide post-column reaction. Journal of Liquid Chromatography & Related Technologies® 32 (2008) 383-398. https://doi.org/10.1080/10826070802631451.

L. Molero, M. Faundez, M.A. del Valle, R. del Río, F. Armijo. Electrochemistry of methimazole on fluorine-doped tin oxide electrodes and its square-wave voltammetric determination in pharma-ceutical formulations. Electrochimica Acta 88 (2013) 871-876. https://doi.org/10.1016/j.electacta.2012.10.142.

F. Jalali, Z. Hatami. Fast electrocatalytic determination of methimazole at an activated glassy carbon electrode. Iranian journal of pharmaceutical research: IJPR 15 (2016) 735. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316251/.

METHIMAZOLE tablet https:/dailymed.nlm.nih.gov/dailymed/drugInfo.cfm, (accessed December 14, 2022).

Downloads

Published

01-01-2023 — Updated on 04-06-2023

How to Cite

Meoipun , A., Kaewjua, K., Chailapakul , O., & Siangproh, W. (2023). A simple and fast flow injection amperometry for the determination of methimazole in pharmaceutical preparations using an unmodified boron-doped diamond electrode. ADMET and DMPK, 11(2), 303–315. https://doi.org/10.5599/admet.1584

Issue

Section

Original Scientific Articles