Gold nanoparticle-modified screen-printed carbon electrodes for label-free detection of SARS-CoV-2 RNA using drop casting and spray coating methods

Original scientific article

Authors

  • Salma Nur Zakiyyah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 40173, Indonesia https://orcid.org/0000-0003-0985-5980
  • Nadya Putri Satriana Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 40173, Indonesia https://orcid.org/0009-0002-6138-1866
  • Natasha Fransisca Universitas Padjadjaran , Department of Chemistry, Faculty of Mathematics and Natural Science https://orcid.org/0009-0004-0334-9176
  • Shabarni Gaffar Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 40173, Indonesia https://orcid.org/0000-0002-3659-4774
  • Norman Syakir Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 40173, Indonesia https://orcid.org/0000-0002-7594-997X
  • Irkham Irkham Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 40173, Indonesia https://orcid.org/0000-0001-9938-2931
  • Yeni Wahyuni Hartati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 40173, Indonesia https://orcid.org/0000-0003-1463-6352

DOI:

https://doi.org/10.5599/admet.2577

Keywords:

Electrochemistry, biosensor, drop casting, spray coating, SARS-CoV-2, gold nanoparticles

Abstract

Background and purpose: This study aimed to explore the modification of screen-printed carbon electrode (SPCE) to produce an extensive conductive surface with gold nanoparticles (AuNPs) for the detection of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ribonucleic acid (RNA). Experimental approach: The experiment was carried out using drop casting (DC) and spray coating (SC) methods. Au-S covalent interactions were formed between thiolated single-stranded DNA (ssDNA ) and Au surface, which further hybridized with the target RNA to be detected using differential pulse voltammetry (DPV). Optimization of experimental conditions was performed using Box-Behnken design (BBD) on probe ssDNA concentration, probe ssDNA immobilization time, and target hybridization time. The morphology of the modified electrode was characterized using a scanning electron microscope, while the electrochemical behaviour was determined with DPV and electron impedance spectroscopy. Key results: The results showed that SPCE modification with AuNPs by DC produced a higher peak current height of 12.267 μA with an Rct value of 2.534 kΩ, while SC improved the distribution of AuNPs in the electrode surface. The optimum experimental conditions obtained using BBD were 0.5 µg mL-1 ssDNA-probe concentration, an immobi¬liza¬tion time of 22 minutes, and a hybridization time of 12 minutes. The limit of SARS-CoV-2 RNA detection at a concentration range of 0.5 to 10 μg mL-1 was 0.1664 and 0.694 μg mL-1 for DC and SC, respectively. The T-test results for both methods show that the current response of target RNA with SPCE/AuNP by DC does not show the same result, indicating a significant difference in the current response between those two methods. Conclusion: SPCE/AuNP by DC is better than SPCE/AuNP by SC for immobilizing inosine-substituted ssDNA, which subsequently hybridizes with viral RNA, enabling label-free detection of guanine from SARS-CoV-2 RNA.

Downloads

Download data is not yet available.

References

Y.W. Hartati, S. Gaffar, D. Alfiani, U. Pratomo, Y. Sofiatin, T. Subroto. A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. Sensing and Bio-Sensing Research 29 (2020) 100343. https://doi.org/10.1016/j.sbsr.2020.100343.

M. Khater, A. de la Escosura-Muñiz, D. Quesada-González, A. Merkoçi. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Analytica Chimica Acta 1046 (2019) 123-131. https://doi.org/10.1016/j.aca.2018.09.031.

E. Kivrak, T. Pauzaite, N.A. Copeland, J.G. Hardy, P. Kara, M. Firlak, A.I. Yardimci, S. Yilmaz, F. Palaz, M. Ozsoz. Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. Biosensors 11 (2021) 17. https://doi.org/10.3390/bios11010017.

D. Davis, X. Guo, L. Musavi, C.S. Lin, S.H. Chen, V.C.H. Wu. Gold nanoparticle-modified carbon electrode biosensor for the detection of listeria monocytogenes. Industrial Biotechnology 9 (2013) 31-36. https://doi.org/10.1089/ind.2012.0033.

R.A. Farghali, R.A. Ahmed. Gold nanoparticles-modified screen-printed carbon electrode for voltammetric determination of sildenafil citrate (Viagra) in pure form, biological and pharmaceutical formulations. International Journal of Electrochemical Science 10 (2015) 1494-1505. https://doi.org/10.1016/s1452-3981(23)05088-5.

N.P. Satriana, S. Gaffar, T. Subroto, Y.W. Hartati. Label-based and label-free electrochemical DNA biosensors for the detection of viruses: A review. Current Topics in Electrochemistry 23 (2021) 117-127. https://doi.org/10.31300/ctec.23.2021.117-127.

Y.W. Hartati, D. Nurdjanah, S. Wyantuti, A. Anggraeni, S. Gaffar. Gold nanoparticles modified screen-printed immunosensor for cancer biomarker HER2 determination based on anti HER2 bioconjugates. AIP Conference Proceedings 2049 (2018) 020051. https://doi.org/10.1063/1.5082456.

M.Y. Ali, H.B. Abdulrahman, W.T. Ting, M.M.R. Howlader. Green synthesized gold nanoparticles and CuO-based nonenzymatic sensor for saliva glucose monitoring. RSC Advances 14 (2024) 577-588. https://doi.org/10.1039/d3ra05644a.

B. Fotovvati, N. Namdari, A. Dehghanghadikolaei. On coating techniques for surface protection: A review. Journal of Manufacturing and Materials Processing 3 (2019) 28. https://doi.org/10.3390/jmmp3010028.

I. Anshori, R.R. Althof, L.N. Rizalputri, E. Ariasena, M. Handayani, A. Pradana, M.R. Akbar, M.R.A.A. Syamsunarno, A. Purwidyantri, B.A. Prabowo, M.S. Annas, H. Munawar, B. Yuliarto. Gold Nanospikes Formation on Screen-Printed Carbon Electrode through Electrodeposition Method for Non-Enzymatic Electrochemical Sensor. Metals 12 (2022) 2116. https://doi.org/10.3390/met12122116.

V.R.R. Bernardo-Boongaling, N. Serrano, J.J. García-Guzmán, J.M. Palacios-Santander, J.M. Díaz-Cruz. Screen-printed electrodes modified with green-synthesized gold nanoparticles for the electrochemical determination of aminothiols. Journal of Electroanalytical Chemistry 847 (2019) 113184. https://doi.org/10.1016/j.jelechem.2019.05.066.

R. Svigelj, I. Zuliani, C. Grazioli, N. Dossi, R. Toniolo. An Effective Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles for Gluten Detection. Nanomaterials 12 (2022) 987. https://doi.org/10.3390/nano12060987.

K.X. Xie, C. Liu, Q. Liu, X.X. Xiao, Z. Li, M.F. Li. Multiarchitecture-Based Plasmonic-Coupled Emission Employing Gold Nanoparticles: An Efficient Fluorescence Modulation and Biosensing Platform. Langmuir 37 (2021) 11880-11886. https://doi.org/10.1021/acs.langmuir.1c01965.

M.N. Karim, J.E. Lee, H.J. Lee. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes. Biosensors and Bioelectronics 61 (2014) 147-151. https://doi.org/10.1016/j.bios.2014.05.011.

R. Gusmão, V. López-Puente, L. Yate, I. Pastoriza-Santos, J. Pérez-Juste, E. González-Romero. Screen-printed carbon electrodes doped with TiO2-Au nanocomposites with improved electrocatalytic performance. Materials Today Communications 11 (2017) 11-17. https://doi.org/10.1016/j.mtcomm.2017.02.003.

R.S. Syafira, M.J. Devi, S. Gaffar, Irkham, I. Kurnia, W. Arnafia, Y. Einaga, N. Syakir, A.R. Noviyanti, Y.W. Hartati. Hydroxyapatite-Gold Modified Screen-Printed Carbon Electrode for Selective SARS-CoV‑2 Antibody Immunosensor. ACS Applied Bio Materials 7 (2024) 950-960. https://doi.org/10.1021/acsabm.3c00953.

C. Mayousse, C. Celle, E. Moreau, J.F. Mainguet, A. Carella, J.P. Simonato. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology 24 (2013) 215501. https://doi.org/10.1088/0957-4484/24/21/215501.

N. Boulanger, V. Skrypnychuk, A. Nordenström, G. Moreno-Fernández, M. Granados-Moreno, D. Carriazo, R. Mysyk, G. Bracciale, P. Bondavalli, A. V. Talyzin. Spray Deposition of Supercapacitor Electrodes using Environmentally Friendly Aqueous Activated Graphene and Activated Carbon Dispersions for Industrial Implementation. ChemElectroChem 8 (2021) 1349-1361. https://doi.org/10.1002/celc.202100235.

P. Mahmoodi, M. Rezayi, E. Rasouli, A. Avan, M. Gholami, M. Ghayour Mobarhan, E. Karimi, Y. Alias. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. Journal of Nanobiotechnology 18 (2020) 11. https://doi.org/10.1186/s12951-020-0577-9.

A.K. Sari, Y.W. Hartati, S. Gaffar, I. Anshori, D. Hidayat, H.L. Wiraswati. The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP. Journal of Electrochemical Science and Engineering 12 (2022) 219-235. https://doi.org/10.5599/jese.1206.

S.N. Zakiyyah, Irkham, Y. Einaga, S.N. Gultom, R.P. Fauzia, G.T.M. Kadja, S. Gaffar, H. Ozsoz, Y.W. Hartati. Green Synthesis of Ceria Nanoparticles from Cassava Tubers for Electrochemical Aptasensor Detection of SARS-CoV-2 on a Screen-Printed Carbon Electrode. ACS Applied Bio Materials 7 (2024) 2488-2498. https://doi.org/10.1021/acsabm.4c00088.

A. Raziq, A. Kidakova, R. Boroznjak, J. Reut, A. Öpik, V. Syritski. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosensors and Bioelectronics 178 (2021) 113029. https://doi.org/10.1016/j.bios.2021.113029.

M. Drobysh, V. Liustrovaite, Y. Kanetski, B. Brasiunas, A. Zvirbliene, A. Rimkute, D. Gudas, I. Kucinskaite-Kodze, M. Simanavicius, S. Ramanavicius, R. Slibinskas, E. Ciplys, I. Plikusiene, A. Ramanavicius. Electrochemical biosensing based comparative study of monoclonal antibodies against SARS-CoV-2 nucleocapsid protein. Science of The Total Environment 908 (2024) 168154. https://doi.org/10.1016/j.scitotenv.2023.168154.

S. Devarakonda, R. Singh, J. Bhardwaj, J. Jang. Cost-effective and handmade paper-based immunosensing device for electrochemical detection of influenza virus. Sensors 17 (2017) 2597. https://doi.org/10.3390/s17112597.

J. Chomoucka, J. Prasek, P. Businova, L. Trnkova, J. Drbohlavova, J. Pekarek, R. Hrdy, J. Hubalek. Novel electrochemical biosensor for simultaneous detection of adenine and guanine based on Cu2O nanoparticles. Procedia Engineering 47 (2012) 702-705. https://doi.org/10.1016/j.proeng.2012.09.244.

M.G. Say, R. Brooke, J. Edberg, A. Grimoldi, D. Belaineh, I. Engquist, M. Berggren. Spray-coated paper supercapacitors. npj Flexible Electronics 4 (2020) 1-7. https://doi.org/10.1038/s41528-020-0079-8.

X. Li, M. Geng, Y. Peng, L. Meng, S. Lu. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis 10 (2020) 102-108. https://doi.org/10.1016/j.jpha.2020.03.001.

I. Astuti, Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 14 (2020) 407-412. https://doi.org/10.1016/j.dsx.2020.04.020.

J.I.A. Rashid, N.A. Yusof. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sensing and Bio-Sensing Research 16 (2017) 19-31. https://doi.org/10.1016/j.sbsr.2017.09.001.

Y. Peng, Y. Pan, Z. Sun, J. Li, Y. Yi, J. Yang, G. Li. An electrochemical biosensor for sensitive analysis of the SARS-CoV-2 RNA. Biosensors and Bioelectronics 186 (2021) 113309. https://doi.org/10.1016/j.bios.2021.113309.

L. Kashefi-Kheyrabadi, H.V. Nguyen, A. Go, C. Baek, N. Jang, J.M. Lee, N.H. Cho, J. Min, M.H. Lee. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosensors and Bioelectronics 195 (2022) 113649. https://doi.org/10.1016/j.bios.2021.113649.

K. Kerman, Y. Morita, Y. Takamura, E. Tamiya. Label-free electrochemical detection of DNA hybridization on gold electrode. Electrochemistry Communications 5 (2003) 887-891. https://doi.org/10.1016/j.elecom.2003.08.013.

Y.W. Hartati, S. Wyantuti, M. Lutfi Firdaus, N. Auliany, R. Surbakti, S. Gaffar. A rapid and sensitive diagnosis of typhoid fever based on nested PCR-Voltammetric DNA biosensor using flagellin gene fragment. Indonesian Journal of Chemistry 16 (2016) 87-91. https://doi.org/10.22146/ijc.21182.

Y.W. Hartati, A.A. Suryani, M. Agustina, S. Gaffar, A. Anggraeni. A Gold Nanoparticle-DNA Bioconjugate-Based Electrochemical Biosensor for Detection of Sus scrofa mtDNA in Raw and Processed Meat. Food Analytical Methods 12 (2019) 2591-2600. https://doi.org/10.1007/s12161-019-01593-6.

Y.W. Hartati, I. Irkham, I. Sumiati, S. Wyantuti, S. Gaffar, S.N. Zakiyyah, M.I.H.L. Zein, M. Ozsoz. The Optimization of a Label-Free Electrochemical DNA Biosensor for Detection of Sus scrofa mtDNA as Food Adulterations. Biosensors 13 (2023) 657. https://doi.org/10.3390/bios13060657.

S. Tripathy, S.G. Singh. Label-Free Electrochemical Detection of DNA Hybridization: A Method for COVID-19 Diagnosis. Transactions of the Indian National Academy of Engineering 5 (2020) 205-209. https://doi.org/10.1007/s41403-020-00103-z.

M. Alafeef, K. Dighe, P. Moitra, D. Pan. Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano 14 (2020) 17028-17045. https://doi.org/10.1021/acsnano.0c06392.

T. Chaibun, J. Puenpa, T. Ngamdee, N. Boonapatcharoen, P. Athamanolap, A.P. O’Mullane, S. Vongpunsawad, Y. Poovorawan, S.Y. Lee, B. Lertanantawong. Rapid electrochemical detection of coronavirus SARS-CoV-2. Nature Communications 12 (2021) 802. https://doi.org/10.1038/s41467-021-21121-7.

L. Fabiani, M. Saroglia, G. Galatà, R. De Santis, S. Fillo, V. Luca, G. Faggioni, N. D’Amore, E. Regalbuto, P. Salvatori, G. Terova, D. Moscone, F. Lista, F. Arduini. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosensors and Bioelectronics 171 (2021) 112686. https://doi.org/10.1016/j.bios.2020.112686.

B. Mojsoska, S. Larsen, D.A. Olsen, J.S. Madsen, I. Brandslund, F.A. Alatraktchi. Rapid SARS-CoV-2 detection using electrochemical immunosensor. Sensors 21 (2021) 390. https://doi.org/10.3390/s21020390.

Z. Rahmati, M. Roushani, H. Hosseini, H. Choobin. Electrochemical immunosensor with Cu2O nanocube coating for detection of SARS-CoV-2 spike protein. Microchimica Acta 188 (2021) 105. https://doi.org/10.1007/s00604-021-04762-9.

M. Emami, M. Shamsipur, R. Saber, R. Irajirad. An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2-iron oxide nanoparticle bioconjugates. Analyst 139 (2014) 2858-2866. https://doi.org/10.1039/c4an00183d.

S.S. Zarei, S. Soleimanian-Zad, A.A. Ensafi. An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode. Microchimica Acta 185 (2018) 538. https://doi.org/10.1007/s00604-018-3075-0.

B. Liu, J. Liu. Freezing Directed Construction of Bio/Nano Interfaces: Reagentless Conjugation, Denser Spherical Nucleic Acids, and Better Nanoflares. Journal of the American Chemical Society 139 (2017) 9471-9474. https://doi.org/10.1021/jacs.7b04885.

B. Liu, J. Liu. Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry. Analytical Methods 9 (2017) 2633-2643. https://doi.org/10.1039/c7ay00368d.

P.K. Jain, W. Qian, M.A. El-Sayed. Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond. Journal of the American Chemical Society 128 (2006) 2426-2433. https://doi.org/10.1021/ja056769z.

Q. Gong, H. Yang, Y. Dong, W. Zhang. A sensitive impedimetric DNA biosensor for the determination of the HIV gene based on electrochemically reduced graphene oxide. Analytical Methods 7 (2015) 2554-2562. https://doi.org/10.1039/c5ay00111k

Downloads

Published

17-02-2025

Issue

Section

Pharmaceutical and biomedical analysis

How to Cite

Gold nanoparticle-modified screen-printed carbon electrodes for label-free detection of SARS-CoV-2 RNA using drop casting and spray coating methods: Original scientific article. (2025). ADMET and DMPK, 13(1), 2577. https://doi.org/10.5599/admet.2577

Funding data

Similar Articles

1-10 of 197

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)