The optimization of electrochemical immunosensors to detect epithelial sodium channel as a biomarker of hypertension
DOI:
https://doi.org/10.5599/admet.1629Keywords:
Box-Behnken design, screen-printed carbon electrode, immunosensor, hypertensionAbstract
The epithelial sodium channel (ENaC) is a transmembrane protein that regulates the balance of sodium salt levels in the body through its expression in various tissues. The increase in sodium salt in the body is related to the expression of ENaC, thereby increasing blood pressure. Therefore, overexpression of the ENaC protein can be used as a biomarker for hypertension. The detection of ENaC protein using anti-ENaC in the biosensor system has been optimized with the Box-Behnken experimental design. The steps carried out in this research are screen-printed carbon electrode modification with gold nanoparticles, then anti-ENaC was immobilized using cysteamine and glutaraldehyde. Optimum conditions of the experiment, such as anti-ENaC concentration, glutaraldehyde incubation time, and anti-ENaC incubation time, were optimized using the Box-Behnken experimental design to determine the factors that influence the increase in immunosensor current response and the optimum conditions obtained were then applied to variations in ENaC protein concentrations. The optimum experimental conditions for anti-ENaC concentration were 2.5 µg/mL, the glutaraldehyde incubation time was 30 minutes, and the anti-ENaC incubation time was 90 minutes. The developed electrochemical immunosensor has a detection limit of 0.0372 ng/mL and a quantification limit of 0.124 ng/mL for the ENaC protein concentration range of 0.09375 to 1.0 ng/mL. Thus, the immunosensor generated from this study can be used to measure the concentration of normal urine samples and those of patients with hypertension.
Downloads
References
R. Castilo. Prevalence And Management Of Hypertension In Southeast Asia. Special Satellite Symposium 03 17 (2016) 1.
WHO. World Health Statistics 2015. (2015) 1–164. https://www.who.int/docs/default-source/gho-documents/world-health-statistic-reports/world-health-statistics-2015.pdf (accessed July 20, 2021).
B.P. dan P.K. Kementerian Kesehatan RI. Hasil Utama RISKESDAS 2018. https://kesmas.kemkes.go.id/assets/upload/dir_519d41d8cd98f00/files/Hasil-riskesdas-2018_1274.pdf (accessed July 17, 2021).
D. Irawan, I. Muhimmah, T. Yuwono. Prototype Smart Instrument Untuk Klasifikasi Penyakit Hipertensi Berdasarkan Jnc-7. Jurnal Teknologi Informasi Dan Terapan 4 (2019) 111–118. https://doi.org/¬10.25047/jtit.v4i2.68.
Y. Sun, J.N. Zhang, D. Zhao, Q.S. Wang, Y.C. Gu, H.P. Ma, Z.R. Zhang. Role of the epithelial sodium channel in salt-sensitive hypertension. Acta Pharmacologica Sinica 32 (2011) 789–797. https://doi.org/10.1038/aps.2011.72.
K. Ando, T. Fujita. Pathophysiology of salt sensitivity hypertension. Annals of Medicine 44 (2012) 119–126. https://doi.org/10.3109/07853890.2012.671538.
H. Garty, L.G. Palmer. Epithelial sodium channels: Function, structure and regulation. Physiological Reviews 77 (1997) 359–396. https://doi.org/10.1152/physrev.1997.77.2.359.
I. Hanukoglu, A. Hanukoglu. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579 (2016) 95–132. https://doi.org/-10.1016/j.gene.2015.12.061.
S. Kellenberger, L. Schild. Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiological Reviews 82 (2002) 735–767. https://doi.org/10.1152/-physrev.00007.2002.
Y. Sofiatin, R. MA Roesli. Detection of Urinary Epithelial Sodium Channel (ENaC) Protein. American Journal of Clinical Medicine Research 6 (2018) 20–23. https://doi.org/10.12691/ajcmr-6-2-1.
A. Khoirunnisa, Y.W. Hartati. Detecting epithelial sodium channel (ENAC) protein levels as a biomarker of hypertension. Journal of Medical Pharmaceutical and Allied Sciences 11 (2022) 5004–5011. https://doi.org/10.55522/jmpas.V11I4.2840.
Y.W. Hartati, S. Gaffar, D. Alfiani, U. Pratomo, Y. Sofiatin, T. Subroto. A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. Sensing and Bio-Sensing Research 29 (2020) 100343. https://doi.org/10.1016/j.sbsr.2020.100343.
Y.W. Hartati, S.F. Yusup, Fitrilawati, S. Wyantuti, Y. Sofiatin, S. Gaffar. A voltammetric epithelial sodium channels immunosensor using screen-printed carbon electrode modified with reduced graphene oxide. Current Chemistry Letters 9 (2020) 151–160. https://doi.org/10.1016/j.sbsr.2020.100343.
Y.W. Hartati, N. Satriana, S. Gaffar, J. Mulyana, S. Wyantuti, Y. Sofiatin. Electrochemical Label-Free Immunosensor for The Detection of Epithelial Sodium Channels Using Gold Modified Screen-Printed Carbon Electrode. ICONISTECH (2019). https://doi.org/10.4108/eai.11-7-2019.2298070.
E.I. Fazrin, A.K. Sari, R. Setiyono, S. Gaffar, Y. Sofiatin, H.H. Bahti, Y.W. Hartati. The Selectivity and Stability of Epithelial Sodium Channel (ENaC) Aptamer as an Electrochemical Aptasensor. Anal. Bioanal. Electrochem. 14 (2022) 715–729.
D.L. García‐Rubio, M.B. de la Mora, D. Cerecedo, J.M. Saniger Blesa, M. Villagrán‐Muniz. An optical-based biosensor of the epithelial sodium channel as a tool for diagnosing hypertension. Biosensors and Bioelectronics 157 (2020) 112151. https://doi.org/10.1016/j.bios.2020.112151.
A.F. Collings, F. Caruso. Biosensors: recent advances. Progress in Phyiscs 60 (1997) 1397–1445. https://doi.org/10.1088/0034-4885/60/11/005
D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult. Electrochemical biosensors - Sensor principles and architectures. Sensors 8 (2008) 1400–1458. https://doi.org/10.3390/s8031400.
G. Shruthi, C. Amitha, B.B. Mathew. Biosensors: A Modern Day Achievement. Journal of Instru-mentation Technology 2 (2014) 26–39. https://doi.org/10.12691/jit-2-1-5.
A.P.F. Turner. Biosensors. Current Opinion in Biotechnology 5 (1994) 49–53.
C. Moina, G. Ybarra. Fundamentals and Applications of Immunosensors, 2012. https://doi.org/-10.1021/ac60368a765.
G.K. Ahirwal, C.K. Mitra. Gold nanoparticles based sandwich electrochemical immunosensor. Biosensors and Bioelectronics 25 (2010) 2016–2020. https://doi.org/10.1016/j.bios.2010.01.029.
S. Kubendhiran, S. Sakthinathan, S.M. Chen, C.M. Lee, B.S. Lou, P. Sireesha, C. Su. Electrochemically activated screen printed carbon electrode decorated with nickel nano particles for the detection of glucose in human serum and human urine sample. International Journal of Electrochemical Science 11 (2016) 7934–7946. https://doi.org/10.20964/2016.09.11.
H. Beitollahi. Advanced electrochemical sensors based on the functional carbon materials. Journal of Electrochemical Science and Engineering 12 (2022) 1–2. https://doi.org/10.5599/jese.1302.
P.M. Jahani. Flower-like MoS2 screen-printed electrode based sensor for the sensitive detection of sunset yellow FCF in food samples. Journal of Electrochemical Science and Engineering 12 (2022) 1099–1109. https://doi.org/10.5599/jese.1413.
M.I. González-Sánchez, B. Gómez-Monedero, J. Agrisuelas, J. Iniesta, E. Valero. Electrochemical performance of activated screen printed carbon electrodes for hydrogen peroxide and phenol derivatives sensing. Journal of Electroanalytical Chemistry 839 (2019) 75–82. https://doi.org/-10.1016/j.jelechem.2019.03.026.
N. Rongwaree, T. Watcharawittayakul, C. Sooksamphanwong, P. Sakdarat, C. Thanachayanont, S. Prichanont, P. Pungetmongkol. Low cost CUO nanorod growth on screen-printed carbon electrode for pesticide analysis. Proceedings of the IEEE Conference on Nanotechnology 2020 (2020) 189–192. https://doi.org/10.1109/NANO47656.2020.9183705.
J.M. Jian, L. Fu, J. Ji, L. Lin, X. Guo, T.L. Ren. Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sensors and Actuators, B: Chemical 262 (2018) 125–136. https://doi.org/10.1016/j.snb.2018.01.164.
J. Zhou, L. Du, L. Zou, Y. Zou, N. Hu, P. Wang. An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on staphylococcal protein A - Au nanoparticle modified gold electrode. Sensors and Actuators, B: Chemical 197 (2014) 220–227. https://doi.org/10.1016/-j.snb.2014.02.009.
M.M.S. Silva, I.T. Cavalcanti, M.F. Barroso, M.G.F. Sales, R.F. Dutra. Gold electrode modified by self-assembled monolayers of thiols to determine DNA sequences hybridization. Journal of Chemical Sciences 122 (2010) 911–917. https://doi.org/10.1007/s12039-010-0079-7.
M.Ç. Canbaz, Ç.S. Şimşek, M.K. Sezgintürk. Electrochemical biosensor based on self-assembled monolayers modified with gold nanoparticles for detection of HER-3. Analytica Chimica Acta 814 (2014) 31–38. https://doi.org/10.1016/j.aca.2014.01.041.
J.N. Miller, J.C. Miller. Statistics and Chemometrics for Analytical Chemistry, Sixth edit, Prentice Hall England, Edinburgh Gate, 2010. https://doi.org/10.7861/clinmedicine.14-6-677.
D.C. Montgomery. Design and Analysis of Experiments Eighth Edition. Arizona State University, 2013.
G.E.P. Box, D.W. Behnken. Some New Three Level Desing for Study of Quantitative Variables. Technometrics 2 (1960) 455–475. https://www.tandfonline.com/doi/abs/10.1080/00401706.1960.-10489912.
D.C.A.S.U. Montgomery. Design and Analysis of Experiments Ninth Edition, 2017. www.wiley.com/go/permissions.%0Ahttps://lccn.loc.gov/2017002355.
P.D. Patel, A. Lakdawala, R.N. Patel. Box–Behnken response surface methodology for optimization of operational parameters of compression ignition engine fuelled with a blend of diesel, biodiesel and diethyl ether. Biofuels 7 (2016) 87–95. https://doi.org/10.1080/17597269.2015.1118784.
F. Arduini, S. Guidone, A. Amine, G. Palleschi, D. Moscone. Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors and Actuators, B: Chemical 179 (2013) 201–208. https://doi.org/10.1016/j.snb.¬2012.10.016.
J.M. Pingarrón, P. Yáñez-Sedeño, A. González-Cortés. Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta 53 (2008) 5848–5866. https://doi.org/10.1016/j.electacta.2008.-03.005.
D.R. Baer, M.H. Engelhard, G.E. Johnson, J. Laskin, J. Lai, K. Mueller, P. Munusamy, S. Thevuthasan, H. Wang, N. Washton, A. Elder, B.L. Baisch, A. Karakoti, S.V.N.T. Kuchibhatla, D. Moon. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 31 (2013) 050820. https://doi.org/10.1116/1.4818423.
S. Wyantuti, M. Permadi, D. Hendrati, Y.W. Hartati. Modifikasi Elektrode Glassy Carbon Dengan Nanopartikel Emas Dan Aplikasinya Untuk Mendeteksi Kromium(VI) Secara Voltammetri Pulsa Differensial. Al-Kimia 5 (2017) 12–20. https://doi.org/10.24252/al-kimia.v5i1.2844.
E.I. Fazrin, A.I. Naviardianti, S. Wyantuti, S. Gaffar, Y.W. Hartati. Review: Sintesis Dan Karakterisasi Nanopartikel Emas (AuNP) Serta Konjugasi AuNP Dengan DNA Dalam Aplikasi Biosensor Elektrokimia. PENDIPA Journal of Science Education 4 (2020) 21–39. https://doi.org/10.33369/pendipa.4.2.21-39.
L. Nie, F. Liu, P. Ma, X. Xiao. Applications of gold nanoparticles in optical biosensors. Journal of Biomedical Nanotechnology 10 (2014) 2700–2721. https://doi.org/10.1166/jbn.2014.1987.
V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, M.A. Iatì. Surface plasmon resonance in gold nanoparticles: A review. Journal of Physics Condensed Matter 29 (2017). https://doi.org/10.1088/-1361-648X/aa60f3.
A.K. Sari, Y.W. Hartati, S. Gaffar, I. Anshori, D. Hidayat, H.L. Wiraswati. The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP. Journal of Electrochemical Science and Engineering 12 (2022) 219–235. https://doi.org/10.5599/jese.1206.
F.C. Krebs. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells 93 (2009) 394–412. https://doi.org/10.1016/-j.solmat.2008.10.004.
A. Rana, N. Baig, T.A. Saleh. Electrochemically pretreated carbon electrodes and their electroanalytical applications - A review. Journal of Electroanalytical Chemistry 833 (2019) 313–332. https://doi.org/¬10.1016¬/¬j.jelechem.¬2018.12.019.
M. Zaib, M.M. Athar. Electrochemical evaluation of Phanerocheaete chrysosporium based carbon paste electrode with potassium ferricyanide redox system. International Journal of Electrochemical Science 10 (2015) 6690–6702.
S. Petrovic. Cyclic Voltammetry of Hexachloroiridate(IV): An Alternative to the Electrochemical Study of the Ferricyanide Ion. The Chemical Educator 5 (2000) 231–235. https://doi.org/-10.1007/s00897000416a.
Y.W. Hartati, D.R. Komala, D. Hendrati, S. Gaffar, A. Hardianto, Y. Sofiatin, H.H. Bahti. An aptasensor using ceria electrodeposited-screen-printed carbon electrode for detection of epithelial sodium channel protein as a hypertension biomarker. Royal Society Open Science 8 (2021) 1-11. https://doi.org/10.1098/rsos.202040.
R.K. Mendes, R.F. Carvalhal, L.T. Kubota. Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development. Journal of Electroanalytical Chemistry 612 (2008) 164–172. https://doi.org/10.1016/j.jelechem.2007.09.033.
J.R. Reimers, M.J. Ford, S.M. Marcuccio, J. Ulstrup, N.S. Hush. Competition of van der waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nature Reviews Chemistry 1 (2017) 1-2. https://doi.org/10.1038/s41570-0017.
M. Tachibana, K. Yoshizawa, A. Ogawa, H. Fujimoto, R. Hoffmann. Sulfur-gold orbital interactions which determine the structure of alkanethiolate/Au(111) self-assembled monolayer systems. Journal of Physical Chemistry B 106 (2002) 12727–12736. https://doi.org/10.1021/jp020993i.
F. López-Gallego, J.M. Guisan, L. Bentacor. Glutaraldehyde-Mediated Protein Immobilization. in: Immobil. Enzym. Cells Third Ed. Methods Mol. Biol., 2013: pp. 33–41. https://doi.org/10.1007/978-1-62703-550-7.
E.P. Randviir, C.E. Banks. Electrochemical impedance spectroscopy: An overview of bioanalytical applications. Analytical Methods 5 (2013) 1098–1115. https://doi.org/10.1039/c3ay26476a.
M. El-Azazy. Electrochemical Impedance Spectroscopy (EIS) in Food, Water, and Drug Analyses: Recent Advances and Applications. Electrochemical Impedance Spectroscopy (2020) 1–17. https://doi.org/10.5772/intechopen.92333.
M. Emami, M. Shamsipur, R. Saber, R. Irajirad. An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2–iron oxide nanoparticle bioconjugates. Analyst 139 (2014) 2858–2866. https://doi.org/10.1039/c4an00183d.
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi
Grant numbers 094/E5/PG.02.00.PT/2022 -
Universitas Padjadjaran
Grant numbers 2203/UN6.3.1/PT.00/2022