Label-free and label-based electrochemical detection of disease biomarker proteins

Authors

  • Tias Febriana Hanifa Lestari Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia https://orcid.org/0000-0002-3486-9615
  • Irkham Irkham Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia https://orcid.org/0000-0001-9938-2931
  • Uji Pratomo Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia https://orcid.org/0000-0001-9917-7743
  • Shabarni Gaffar Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia https://orcid.org/0000-0002-3659-4774
  • Salma Nur Zakiyyah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia https://orcid.org/0000-0003-0985-5980
  • Isnaini Rahmawati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424, Indonesia https://orcid.org/0000-0003-1327-592X
  • Seda Nur Topkaya Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Turkey https://orcid.org/0000-0002-7816-3155
  • Yeni Wahyuni Hartati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia https://orcid.org/0000-0003-1463-6352

DOI:

https://doi.org/10.5599/admet.2162

Keywords:

Biosensor, biomarker, electrochemical detection, protein detection
Graphical Abstract

Abstract

Introduction: Biosensors, analytical devices integrating biological sensing elements with physicochemical transducers, have gained prominence as rapid and convenient tools for monitoring human health status using biochemical analytes. Due to its cost-effectiveness, simplicity, portability, and user-friendliness, electrochemical detection has emerged as a widely adopted method in biosensor applications. Crucially, biosensors enable early disease diagnosis by detecting protein biomarkers associated with various conditions. These biomarkers offer an objective indication of medical conditions that can be accurately observed from outside the patient. Method: This review comprehensively documents both label-free and labelled detection methods in electrochemical biosensor techniques. Label-free detection mechanisms elicit response signals upon analyte molecule binding to the sensor surface, while labelled detection employs molecular labels such as enzymes, nanoparticles, and fluorescent tags. Conclusion: The selection between label-free and labelled detection methods depends on various factors, including the biomolecular compound used, analyte type and biological binding site, biosensor design, sample volume, operational costs, analysis time, and desired detection limit. Focusing on the past six years, this review highlights the application of label-free and labelled electrochemical biosensors for detecting protein biomarkers of diseases.

Downloads

Download data is not yet available.

References

C. Ziegler, W. Gopel. Biosensor Development, Institute of Physical and Theoretical Chemistry, University of Tiibingen, D-72076 Tiibingen, Germany, 2022, p.585. https://dx.doi.org/10.1016/B978-0-12-822548-6.00112-6.

C. Karunakaran, R. Rajkumar, K. Bhargava. Introduction to Biosensors, Elsevier Inc., Delhi, 2015, p.3. http://dx.doi.org/10.1016/B978-0-12-803100-1.00001-3.

M. Pourmadadi, F. Yazdian, S. Ghorbanian, A. Shamsabadipour, E. Khandel, H. Rashedi, A. Rahdar, A. Diez-Pascual. Construction of Aptamer-Based Nanobiosensor for Breast. Biosensors 12 (2022) 921. https://doi.org/10.3390/bios12110921.

D.L. Röhlen, J. Pilas, M. Dahmen, M. Keusgen, T. Selmer, M.J. Schöning. Toward a hybrid biosensor system for analysis of organic and volatile fatty acids in fermentation processes. Frontiers in Chemistry 6 (2018) 284. https://dx.doi.org/10.3389/fchem.2018.00284.

M.B. Kulkarni, N.H. Ayachit, T.M. Aminabhavi. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 12 (2022) 543. https://dx.doi.org/10.3390/bios12070543.

M.B. Kulkarni, N.H. Ayachit, T.M. Aminabhavi. Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors 12 (2022) 892. https://dx.doi.org/10.3390/bios12100892.

M.B. Kulkarni, N.H. Ayachit, T.M. Aminabhavi. A Short Review on Miniaturized Biosensors for the Detection of Nucleic Acid Biomarkers. Biosensors 13 (2023) 412. https://dx.doi.org/10.3390/bios13030412.

M.S. Thakur, K. V. Ragavan. Biosensors in food processing. Journal of Food Science and Technology 50 (2013) 625-641. https://dx.doi.org/10.1007/s13197-012-0783-z.

F.J. Gruhl, B.E. Rapp, K. Länge. Biosensors for Diagnostic Applications, Springer-Verlag, Berlin Heidelberg, 2011. https://dx.doi.org/10.1007/10_2011_130.

S. Kumar, S.D. Bukkitgar, S. Singh, Pratibha, V. Singh, K.R. Reddy, N.P. Shetti, C. Venkata Reddy, V. Sadhu, S. Naveen. Electrochemical Sensors and Biosensors Based on Graphene Functionalized with Metal Oxide Nanostructures for Healthcare Applications. ChemistrySelect 4 (2019) 5322-5337. https://dx.doi.org/10.1002/slct.201803871.

S.K. Arya, M. Datta, S.P. Singh, B.D. Malhotra. Biosensor for total cholesterol estimation using N-(2-aminoethyl)-3- aminopropyltrimethoxysilane self-assembled monolayer. Analytical and Bioanalytical Chemistry 389 (2007) 2235-2242. https://dx.doi.org/10.1007/s00216-007-1655-7.

V.S.P.K.S.A. Jayanthi, A.B. Das, U. Saxena. Recent advances in biosensor development for the detection of cancer biomarkers. Biosensors and Bioelectronics 91 (2017) 15-23. https://dx.doi.org/10.1016/j.bios.2016.12.014.

S.K. Arya, S.P. Singh, B.D. Malhotra. Handbook of Biosensors and Biochips, John Wiley & Sons, New Delhi, 2008, p.1-2. https://dx.doi.org/10.1002/9780470061565.hbb032.

R. Keçili, A. Denizli. Molecular Imprinting for Nanosensors and Other Sensing Applications, Inc., Delhi, 2021, p.19-43. https://doi.org/10.1016/B978-0-12-822117-4.00002-2.

N.J. Ronkainen, H.B. Halsall, W.R. Heineman. Electrochemical biosensors. Chemical Society Reviews 39 (2010) 1747-1763. https://dx.doi.org/10.1039/b714449k.

J. Baranwal, B. Barse, G. Gatto, G. Broncova, A. Kumar. Electrochemical Sensors and Their Applications: A Review. Chemosensors 10 (2022) 363. https://dx.doi.org/10.3390/chemosensors10090363.

W. Deenin, A. Yakoh, U. Pimpitak, E. Pasomsub, S. Rengpipat, G.A. Crespo, S. Chaiyo. Electrochemical lateral-flow device for rapid COVID-19 antigen-diagnostic testing. Bioelectrochemistry 152 (2023) 108438. https://dx.doi.org/10.1016/j.bioelechem.2023.108438.

V. Perumal, U. Hashim. Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine 12 (2014) 1-15. https://doi.org/10.1016/j.jab.2013.02.001.

D. Harvey. 11.4: Voltammetric and Amperometric Methods - Chemistry LibreTexts. The LibreTexts Libraries (2020) 285-289. https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Book%3A_Analytical_Chemistry_2.1_(Harvey)/11%3A_Electrochemical_Methods/11.04%3A_Voltammetric_and_Amperometric_Methods.

A. Ghanam, H. Mohammadi, A. Amine, N. Haddour, F. Buret. Chemical Sensors: Electrochemical Sensors; Voltammetry/Amperometry. Encyclopedia of Sensors and Biosensors (2021) 03327589. https://doi.org/10.1016/B978-0-12-822548-6.00032-7.

E. Bakker, E. Pretsch. Potentiometric sensors for trace-level analysis. TrAC - Trends in Analytical Chemistry 24 (2005) 199-207. https://dx.doi.org/10.1016/j.trac.2005.01.003.

M. El-Azazy. Electrochemical Impedance Spectroscopy (EIS) in Food, Water, and Drug Analyses: Recent Advances and Applications. Electrochemical Impedance Spectroscopy (2020) c.8. https://dx.doi.org/10.5772/intechopen.92333.

M. Pohanka, P. Skládal. Electrochemical biosensors - Principles and applications. Journal of Applied Biomedicine 6 (2008) 57-64. https://dx.doi.org/10.32725/jab.2008.008.

O.O. Soldatkin, V.M. Peshkova, S. V. Dzyadevych, A.P. Soldatkin, N. Jaffrezic-Renault, A. V. El’skaya. Novel sucrose three-enzyme conductometric biosensor. Materials Science and Engineering C 28 (2008) 959-964. https//dx.doi.org/10.1016/j.msec.2007.10.034.

Y. Fu, N. Wang, A. Yang, H.K. wai Law, L. Li, F. Yan. Highly Sensitive Detection of Protein Biomarkers with Organic Electrochemical Transistors. Advanced Materials 29 (2017) 1703787. https://dx.doi.org/10.1002/adma.201703787.

O. Jalil, C.M. Pandey, D. Kumar. Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide. Microchimica Acta 187 (2020) 275. https://dx.doi.org/10.1007/s00604-020-04233-7.

K.C. Chong, F. Hu, B. Liu. AIEgen bioconjugates for specific detection of disease-related protein biomarkers. Materials Chemistry Frontiers 3 (2019) 12-24. https://dx.doi.org/10.1039/c8qm00383a.

M.S. Pepe, R. Etzioni, Z. Feng, J.D. Potter, M. Lou Thompson, M. Thornquist, M. Winget, Y. Yasui. Phases of biomarker development for early detection of cancer. Journal of the National Cancer Institute 93 (2001) 1054-1061. https://dx.doi.org/10.1093/jnci/93.14.1054.

P. Perco, C. Pleban, A. Kainz, A. Lukas, G. Mayer, B. Mayer, R. Oberbauer. Protein biomarkers associated with acute renal failure and chronic kidney disease: Review. European Journal of Clinical Investigation 36 (2006) 753-763. https://dx.doi.org/10.1111/j.1365-2362.2006.01729.x.

L. Reilly, S. Seddighi, A.B. Singleton, M.R. Cookson, M.E. Ward, Y.A. Qi. Variant biomarker discovery using mass spectrometry-based proteogenomics. Frontiers in Aging 4 (2023) 1191993. https://dx.doi.org/10.3389/fragi.2023.1191993.

C. Chase Huizar, I. Raphael, T.G. Forsthuber. Genomic, proteomic, and systems biology approaches in biomarker discovery for multiple sclerosis. Cellular Immunology 358 (2020) 104219. https://dx.doi.org/10.1016/j.cellimm.2020.104219.

M.R. Hasan, M.S. Ahommed, M. Daizy, M.S. Bacchu, M.R. Ali, M.R. Al-Mamun, M.A. Saad Aly, M.Z.H. Khan, S.I. Hossain. Recent development in electrochemical biosensors for cancer biomarkers detection. Biosensors and Bioelectronics: X 8 (2021) 100075. https://doi.org/10.1016/j.biosx.2021.100075.

A. V. Karaulov, V. Garib, F. Garib, R. Valenta. Protein Biomarkers in Asthma. International Archives of Allergy and Immunology 175 (2018) 189-208. https://dx.doi.org/10.1159/000486856.

Y.W. Hartati, S. Gaffar, D. Alfiani, U. Pratomo, Y. Sofiatin, T. Subroto. A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. Sensing and Bio-Sensing Research 29 (2020) 100343. https://doi.org/10.1016/j.sbsr.2020.100343.

O.F. Laterza, R.C.. Hendrickson, J.. Wagner. Molecular Biomarkers. Biomarkers. 41 (2007) 573-585. https://doi.org/10.1177/009286150704100504.

Biomarkers in risk assesment: validity and validation. World Health Organization (2001). https://apps.who.int/iris/handle/10665/42363 (accessed October 25, 2021).

K. Shi, W. Lin, X.M. Zhao. Identifying Molecular Biomarkers for Diseases with Machine Learning Based on Integrative Omics. IEEE/ACM Transactions on Computational Biology and Bioinformatics 18 (2021) 2514-2525. https://dx.doi.org/10.1109/TCBB.2020.2986387.

A. Bodaghi, N. Fattahi, A. Ramazani. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 9 (2023) e13323. https://dx.doi.org/10.1016/j.heliyon.2023.e13323.

R. Frank, R. Hargreaves. Clinical biomarkers in drug discovery and development. Nature Reviews Drug Discovery 2 (2003) 566-580. https://dx.doi.org/10.1038/nrd1130.

K. Strimbu, J.A. Tavel. What are biomarkers? Current Opinion in HIV and AIDS. National Institutes of Health 5 (2010) 463-466. https://dx.doi.org/10.1097/COH.0b013e32833ed177.

A.J. Atkinson, W.A. Colburn, V.G. DeGruttola, D.L. DeMets, G.J. Downing, D.F. Hoth, J.A. Oates, C.C. Peck, R.T. Schooley, B.A. Spilker, J. Woodcock, S.L. Zeger. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology and Therapeutics 69 (2001) 89-95. https://dx.doi.org/10.1067/mcp.2001.113989.

L. Liu, H. Pang, Q. He, B. Pan, X. Sun, J. Shan, L. Wu, K. Wu, X. Yao, Y. Guo. A novel strategy to identify candidate diagnostic and prognostic biomarkers for gastric cancer. Cancer Cell International 21 (2021) 335. https://dx.doi.org/10.1186/s12935-021-02007-6.

C.T. Wallington-Beddoe, R.L. Mynott. Prognostic and predictive biomarker developments in multiple myeloma. Journal of Hematology and Oncology 14 (2021) 151. https://dx.doi.org/10.1186/s13045-021-01162-7.

E. Fathi, S.A. Mesbah-namin. Biomarkers in Medicine: An Overview. British Journal of Medicine and Medical Research 4 (2013) 1701-1718. https://dx.doi.org/10.9734/bjmmr/2014/6917.

A. Michalski, J. Cox, M. Mann. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. Journal of Proteome Research 10 (2011) 1785-1793. https://dx.doi.org/10.1021/pr101060v.

S.M. Hewitt, J. Dear, R.A. Star. Discovery of protein biomarkers for renal diseases. Journal of the American Society of Nephrology 15 (2004) 1677-1689. https://dx.doi.org/10.1097/01.ASN.0000129114.92265.32.

S. Campuzano, P. Yánez-Sedeño, J.M. Pingarrón. Electrochemical bioaffinity sensors for salivary biomarkers detection. TrAC - Trends in Analytical Chemistry 86 (2017) 14-24. https://dx.doi.org/10.1016/j.trac.2016.10.002.

C.A. Brown, J. Bogers, S. Sahebali, C.E. Depuydt, F. De Prins, D.P. Malinowski. Role of protein biomarkers in the detection of high-grade disease in cervical cancer screening programs. Journal of Oncology 2012 (2012) 289315. https://dx.doi.org/10.1155/2012/289315.

M. Hasanzadeh, N. Shadjou, M. de la Guardia. Early stage screening of breast cancer using electrochemical biomarker detection. TrAC - Trends in Analytical Chemistry 91 (2017) 67-76. https://dx.doi.org/10.1016/j.trac.2017.04.006.

B. Bohunicky, S.A. Mousa. Biosensors: The new wave in cancer diagnosis. Nanotechnology, Science and Applications 4 (2011) 1-10. https://dx.doi.org/10.2147/NSA.S13465.

M.A. Rahman, M.J.A. Shiddiky, J.S. Park, Y.B. Shim. An impedimetric immunosensor for the label-free detection of bisphenol A. Biosensors and Bioelectronics 22 (2007) 2464-2470. https://dx.doi.org/10.1016/j.bios.2006.09.010.

B.E. Rapp, F.J. Gruhl, K. Länge. Biosensors with label-free detection designed for diagnostic applications. Analytical and Bioanalytical Chemistry 398 (2010) 2403-2412. https://dx.doi.org/10.1007/s00216-010-3906-2.

I. Grabowska, N. Sharma, A. Vasilescu, M. Iancu, G. Badea, R. Boukherroub, S. Ogale, S. Szunerits. Electrochemical Aptamer-Based Biosensors for the Detection of Cardiac Biomarkers. ACS Omega 3 (2018) 12010-12018. https://dx.doi.org/10.1021/acsomega.8b01558.

J.H. Kim, C.H. Cho, M.Y. Ryu, J.G. Kim, S.J. Lee, T.J. Park, J.P. Park. Development of peptide biosensor for the detection of dengue fever biomarker, nonstructural 1. PLoS ONE 14 (2019) e0222144. https://dx.doi.org/10.1371/journal.pone.0222144.

M. Devillers, L. Ahmad, H. Korri-Youssoufi, L. Salmon. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma. Biosensors and Bioelectronics 96 (2017) 178-185. https://dx.doi.org/10.1016/j.bios.2017.04.031.

J.M. Lim, M.Y. Ryu, J.H. Kim, C.H. Cho, T.J. Park, J.P. Park. An electrochemical biosensor for detection of the sepsis-related biomarker procalcitonin. RSC Advances 7 (2017) 36562-36565. https://dx.doi.org/10.1039/c7ra06553a.

J.A. Ribeiro, C.M. Pereira, A.F. Silva, M.G.F. Sales. Electrochemical detection of cardiac biomarker myoglobin using polyphenol as imprinted polymer receptor. Analytica Chimica Acta 981 (2017) 41-52. https://dx.doi.org/10.1016/j.aca.2017.05.017.

J. Janssen, M. Lambeta, P. White, A. Byagowi. Carbon nanotube-based electrochemical biosensor for label-free protein detection. Biosensors 9 (2019) 144. https://dx.doi.org/10.3390/bios9040144.

N. Carlin, S. Martic-Milne. Anti-Tau Antibodies Based Electrochemical Sensor for Detection of Tau Protein Biomarkers. Journal of The Electrochemical Society 165 (2018) G3018-G3025. https://dx.doi.org/10.1149/2.0041812jes.

S. Bakshi, S. Mehta, T. Kumeria, M.J.A. Shiddiky, A. Popat, S. Choudhury, S. Bose, R. Nayak. Rapid fabrication of homogeneously distributed hyper-branched gold nanostructured electrode based electrochemical immunosensor for detection of protein biomarkers. Sensors and Actuators, B: Chemical 326 (2021) 128803. https://doi.org/10.1016/j.snb.2020.128803.

B.Y. Kim, H.B. Lee, N.E. Lee. A durable, stretchable, and disposable electrochemical biosensor on three-dimensional micro-patterned stretchable substrate. Sensors and Actuators, B: Chemical 283 (2019) 312-320. https://dx.doi.org/10.1016/j.snb.2018.12.045.

Y.C. Kuo, C.K. Lee, C.T. Lin. Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes. Biosensors and Bioelectronics 103 (2018) 130-137. https://dx.doi.org/10.1016/j.bios.2017.11.065.

N. Radha Shanmugam, S. Muthukumar, S. Chaudhry, J. Anguiano, S. Prasad. Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers. Biosensors and Bioelectronics 89 (2017) 764-772. https://dx.doi.org/10.1016/j.bios.2016.10.046.

S. Sri, G.B.V.S. Lakshmi, P. Gulati, D. Chauhan, A. Thakkar, P.R. Solanki. Simple and facile carbon dots based electrochemical biosensor for TNF-α targeting in cancer patient’s sample. Analytica Chimica Acta 1182 (2021) 338909. https://dx.doi.org/10.1016/j.aca.2021.338909.

S. Lei, Z. Liu, L. Xu, L. Zou, G. Li, B. Ye. A “signal-on” electrochemical biosensor based on DNAzyme-driven bipedal DNA walkers and TdT-mediated cascade signal amplification strategy. Analytica Chimica Acta (2019) 237291. https://doi.org/10.1016/j.aca.2019.12.008.

E. Macchia, P. Romele, K. Manoli, M. Ghittorelli, M. Magliulo, Z. Kovacks-Vajna, F. Torricelli, L. Torsi. Ultra-sensitive protein detection with organic electrochemical transistors printed on plastic substrate. Flexible and Printed Electronics 3 (2018) 034002. https://doi.org/10.1088/2058-8585/aad0cb.

A.T.E. Vilian, W. Kim, B. Park, S.Y. Oh, T.Y. Kim, Y.S. Huh, C.K. Hwangbo, Y.K. Han. Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: A predictive strategy for heart failure. Biosensors and Bioelectronics 142 (2019) 111549. https://doi.org/10.1016/j.bios.2019.111549.

L. Ahmad, L. Salmon, H. Korri-Youssoufi. Electrochemical detection of the human cancer biomarker ‘autocrine motility factor-phosphoglucose isomerase’ based on a biosensor formed with a monosaccharidic inhibitor. Sensors and Actuators, B: Chemical 299 (2019) 126933. https://dx.doi.org/10.1016/j.snb.2019.126933.

B.S. Vadlamani, T. Uppal, S.C. Verma, M. Misra. Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. MedRxiv (2020) 5871. https://dx.doi.org/10.1101/2020.09.07.20190173.

Z. Sun, L. Wang, S. Wu, Y. Pan, Y. Dong, S. Zhu, J. Yang, Y. Yin, G. Li. An Electrochemical Biosensor Designed by Using Zr-Based Metal-Organic Frameworks for the Detection of Glioblastoma-Derived Exosomes with Practical Application. Analytical Chemistry 92 (2020) 3819-3826. https://dx.doi.org/10.1021/acs.analchem.9b05241.

Y.W. Hartati, S.F. Yusup, Fitrilawati, S. Wyantuti, Y. Sofiatin, S. Gaffar. A voltammetric epithelial sodium channels immunosensor using screen-printed carbon electrode modified with reduced graphene oxide. Current Chemistry Letters 9 (2020) 151-160. https://dx.doi.org/10.1016/j.sbsr.2020.100343.

X. Li, M. Jiang, J. Cheng, M. Ye, W. Zhang, N. Jaffrezic-Renault, Z. Guo. Signal multi-amplified electrochemical biosensor for voltammetric determination of tau-441 protein in biological samples using carbon nanomaterials and gold nanoparticles to hint dementia. Microchimica Acta 187 (2020) 302. https://dx.doi.org/10.1007/s00604-020-04273-z.

S. Shahrokhian, R. Salimian. Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing. Sensors and Actuators, B: Chemical 266 (2018) 160-169. https://dx.doi.org/10.1016/j.snb.2018.03.120.

T.S.C.R. Rebelo, I.M. Miranda, A.T.S.C. Brandão, L.I.G. Sousa, J.A. Ribeiro, A.F. Silva, C.M. Pereira. A Disposable Saliva Electrochemical MIP-Based Biosensor for Detection of the Stress Biomarker α-Amylase in Point-of-Care Applications. Electrochem 2 (2021) 427-438. https://dx.doi.org/10.3390/electrochem2030028.

M. Arabi, A. Ostovan, Z. Zhang, Y. Wang, R. Mei, L. Fu, X. Wang, J. Ma, L. Chen. Label-free SERS detection of Raman-Inactive protein biomarkers by Raman reporter indicator: Toward ultrasensitivity and universality. Biosensors and Bioelectronics 174 (2021) 112825. https://dx.doi.org/10.1016/j.bios.2020.112825.

S.K. Tuteja, T. Duffield, S. Neethirajan. Graphene-based multiplexed disposable electrochemical biosensor for rapid on-farm monitoring of NEFA and βhBA dairy biomarkers. Journal of Materials Chemistry B 5 (2017) 6930-6940. https://dx.doi.org/10.1039/c7tb01382e.

Y. Wang, M. Cui, M. Jiao, X. Luo. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Analytical and Bioanalytical Chemistry 410 (2018) 5871-5878. https://dx.doi.org/10.1007/s00216-018-1201-9.

L.P. Sun, Y. Zhong, J. Gui, X.W. Wang, X.R. Zhuang, J. Weng. Ahydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers. International Journal of Nanomedicine 13 (2018) 843-856. https://dx.doi.org/10.2147/IJN.S152163.

W.A. Hassanain, A. Sivanesan, E.L. Izake, G.A. Ayoko. An electrochemical biosensor for the rapid detection of erythropoietin in blood. Talanta 189 (2018) 636-640. https://dx.doi.org/10.1016/j.talanta.2018.07.045.

G. Wang, R. Han, Q. Li, Y. Han, X. Luo. Electrochemical Biosensors Capable of Detecting Biomarkers in Human Serum with Unique Long-Term Antifouling Abilities Based on Designed Multifunctional Peptides. Analytical Chemistry 92 (2020) 7186-7193. https://dx.doi.org/10.1021/acs.analchem.0c00738.

M. Xu, V.K. Yadavalli. Flexible Biosensors for the Impedimetric Detection of Protein Targets Using Silk-Conductive Polymer Biocomposites. ACS Sensors 4 (2019) 1040-1047. https://dx.doi.org/10.1021/acssensors.9b00230.

Y.W. Hartati, N. Satriana, S. Gaffar, J. Mulyana, S. Wyantuti, Y. Sofiatin. Electrochemical Label-Free Immunosensor for The Detection of Epithelial Sodium Channels Using Gold Modified Screen-Printed Carbon Electrode. ICONISTECH (2019) 1-12. https://dx.doi.org/10.4108/eai.11-7-2019.2298070.

G. Figueroa-Miranda, L. Feng, S.C.C. Shiu, R.M. Dirkzwager, Y.W. Cheung, J.A. Tanner, M.J. Schöning, A. Offenhäusser, D. Mayer. Aptamer-based electrochemical biosensor for highly sensitive and selective malaria detection with adjustable dynamic response range and reusability. Sensors and Actuators, B: Chemical 255 (2018) 235-243. https://dx.doi.org/10.1016/j.snb.2017.07.117.

S.K. Arya, P. Estrela. Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine. Biosensors and Bioelectronics 117 (2018) 620-627. https://dx.doi.org/10.1016/j.bios.2018.07.003.

R. Han, G. Wang, Z. Xu, L. Zhang, Q. Li, Y. Han, X. Luo. Designed antifouling peptides planted in conducting polymers through controlled partial doping for electrochemical detection of biomarkers in human serum. Biosensors and Bioelectronics 164 (2020) 112317. https://doi.org/10.1016/j.bios.2020.112317.

P. Zhurauski, S.K. Arya, P. Jolly, C. Tiede, D.C. Tomlinson, P. Ko Ferrigno, P. Estrela. Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection. Biosensors and Bioelectronics 108 (2018) 10303. https://dx.doi.org/10.1016/j.bios.2018.02.041.

G.C.M. de Oliveira, J.H. de S. Carvalho, L.C. Brazaca, N.C.S. Vieira, B.C. Janegitz. Flexible platinum electrodes as electrochemical sensor and immunosensor for Parkinson’s disease biomarkers. Biosensors and Bioelectronics 152 (2020) 112016. https://dx.doi.org/10.1016/j.bios.2020.112016.

L. Liv. Electrochemical immunosensor platform based on gold-clusters, cysteamine and glutaraldehyde modified electrode for diagnosing COVID-19. Microchemical Journal 168 (2021) 106445. https://doi.org/10.1016/j.microc.2021.106445.

L.H. Pan, S.H. Kuo, T.Y. Lin, C.W. Lin, P.Y. Fang, H.W. Yang. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosensors and Bioelectronics 89 (2017) 598-605. https://dx.doi.org/10.1016/j.bios.2016.01.077.

F.C.B. Fernandes, P.R. Bueno. Optimized electrochemical biosensor for human prostatic acid phosphatase. Sensors and Actuators, B: Chemical 253 (2017) 1106-1112. https://dx.doi.org/10.1016/j.snb.2017.06.035.

C.H. Cho, J.H. Kim, D.K. Song, T.J. Park, J.P. Park. An affinity peptide-incorporated electrochemical biosensor for the detection of neutrophil gelatinase-associated lipocalin. Biosensors and Bioelectronics 142 (2019) 111482. https://dx.doi.org/10.1016/j.bios.2019.111482.

S. Damiati, M. Peacock, S. Leonhardt, L. Damiati, M.A. Baghdadi, H. Becker, R. Kodzius, B. Schuster. Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow cell for detection of hepatic oval cells (HOCs). Genes 9 (2018) 89. https://dx.doi.org/10.3390/genes9020089.

T. Lee, Y. Lee, S.Y. Park, K. Hong, Y. Kim, C. Park, Y.H. Chung, M.H. Lee, J. Min. Fabrication of electrochemical biosensor composed of multi-functional DNA structure/Au nanospike on micro-gap/PCB system for detecting troponin I in human serum. Colloids and Surfaces B: Biointerfaces 175 (2019) 343-350. https://dx.doi.org/10.1016/j.colsurfb.2018.11.078.

M. Jarczewska, A. Trojan, M. Gągała, E. Malinowska. Studies on the Affinity-based Biosensors for Electrochemical Detection of HER2 Cancer Biomarker. Electroanalysis 31 (2019) 1125-1134. https://dx.doi.org/10.1002/elan.201900041.

T. Gao, J. Zhi, C. Mu, S. Gu, J. Xiao, J. Yang, Z. Wang, Y. Xiang. One-step detection for two serological biomarker species to improve the diagnostic accuracy of hepatocellular carcinoma. Talanta 178 (2018) 89-93. https://dx.doi.org/10.1016/j.talanta.2017.09.011.

N.I. Khan, A.G. Maddaus, E. Song. A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Biosensors 8 (2018) 7. https://dx.doi.org/10.3390/bios8010007.

L.C.T. Shoute, G.N. Abdelrasoul, Y. Ma, P.A. Duarte, C. Edwards, R. Zhuo, J. Zeng, Y. Feng, C.L. Charlton, J.N. Kanji, S. Babiuk, J. Chen. Label-free impedimetric immunosensor for point-of-care detection of COVID-19 antibodies. Microsystems and Nanoengineering 9 (2023) 3. https://dx.doi.org/10.1038/s41378-022-00460-5.

D.N. Altay, H. Yagar, H.M. Ozcan. A new ITO-based Aβ42 biosensor for early detection of Alzheimer’s disease. Bioelectrochemistry 153 (2023) 37421689. https://dx.doi.org/10.1016/j.bioelechem.2023.108501.

S. Ahmadi, N. Lotay, M. Thompson. Affinity-based electrochemical biosensor with antifouling properties for detection of lysophosphatidic acid, a promising early-stage ovarian cancer biomarker. Bioelectrochemistry 153 (2023) 108466. https://dx.doi.org/10846610.1016/j.bioelechem.2023.108466.

M.V. Tieu, S.H. Choi, H.T.N. Le, S. Cho. Electrochemical impedance-based biosensor for label-free determination of plasma P-tau181 levels for clinically accurate diagnosis of mild cognitive impairment and Alzheimer’s disease. Analytica Chimica Acta 1273 (2023) 341535. https://doi.org/10.1016/j.aca.2023.341535.

Y. Yue, X. Chen, J. Wang, M. Ma, A. He, R. Liu. Label-free electrochemical biosensor with magnetically induced self-assembly for the detection of cancer antigen 125. Arabian Journal of Chemistry 16 (2023) 105070. https://doi.org/10.1016/j.arabjc.2023.105070.

A. Akbari, H. Hashemzadeh, Z.S. Eshkiki, M. Masoodi, S.P. Tabaeian, H. Naderi-Manesh, A.A. Zare, S. Agah. Detection of plasma miR-223 by a novel label-free graphene oxide/gold nanocomposite immunosensor in colorectal cancer patients: An electrochemical biosensor approach. Biosensors and Bioelectronics: X 14 (2023) 100331. https://dx.doi.org/10.1016/j.biosx.2023.100331.

H.J. Yang, M.W. Kim, C.V. Raju, C.H. Cho, T.J. Park, J.P. Park. Highly sensitive and label-free electrochemical detection of C-reactive protein on a peptide receptor−gold nanoparticle−black phosphorous nanocomposite modified electrode. Biosensors and Bioelectronics 234 (2023) 115382. https://dx.doi.org/10.1016/j.bios.2023.115382.

K. Prabhu, M. Lakshminarayanan, G. Mohankumar, N. Ponpandian, C. Viswanathan. Vertically pillared α-Fe2O3 nanorods on carbon yarn as a textile-based stable immunosensor electrode for selective electrochemical sensing of interleukin-6 cancer biomarker. Sensors and Actuators A: Physical 357 (2023) 114419. https://doi.org/10.1016/j.sna.2023.114419.

R. Liu, Y. Zhang, M. Liu, Y. Ni, Y. Yue, S. Wu, S. Li. Electrochemical sensor based on Fe3O4/α-Fe2O3@Au magnetic nanocomposites for sensitive determination of the TP53 gene. Bioelectrochemistry 152 (2023) 108429. https://dx.doi.org/10.1016/j.bioelechem.2023.108429.

T.N. Ghosh, D. Rotake, S. Kumar, I. Kaur, S.G. Singh. Tear-based MMP-9 detection: A rapid antigen test for ocular inflammatory disorders using vanadium disulfide nanowires assisted chemi-resistive biosensor. Analytica Chimica Acta 1263 (2023) 341281. https://dx.doi.org/10.1016/j.aca.2023.341281.

F. Kohansal, A. Mobed, N. Aletaha, K. Ghaseminasab, S. Dolati, M. Hasanzadeh. Biosensing of telomerase antigen using sandwich type immunosensor based on poly(β-Cyclodextrin) decorated by Au@Pt nanoparticles: An innovative immune-platform toward early-stage identification of cancer. Microchemical Journal 190 (2023) 108649. https://doi.org/10.1016/j.microc.2023.108649.

E.B. Aydın, M. Aydın, M.K. Sezgintürk. A novel electrochemical impedance immunosensor for the quantification of CYFRA 21-1 in human serum. Microchimica Acta 190 (2023) 235. https://dx.doi.org/10.1007/s00604-023-05813-z.

A.K. Yadav, D. Verma, A. Kumar, A.N. Bhatt, P.R. Solanki. Biocompatible epoxysilane substituted polymer-based nano biosensing platform for label-free detection of cancer biomarker SP17 in patient serum samples. International Journal of Biological Macromolecules 239 (2023) 124325. https://doi.org/10.1016/j.ijbiomac.2023.124325.

X. Mi, H. Li, Y. Tu. An Aptamer Biosensing Strategy for Label-Free Assay of Dual Acute Myocardial Infarction Biomarkers Built upon AuNPs/Ti3C2-MXenes. Chemosensors 11 (2023) 157. https://dx.doi.org/10.3390/chemosensors11030157.

E.B. Aydin, M. Aydin, M.K. Sezgintürk. A Simple and Low-Cost Electrochemical Immunosensor for Ultrasensitive Determination of Calreticulin Biomarker in Human Serum. Macro Molecular Bioscience (2022) 2200390. https://doi.org/10.1002/mabi.202200390.

H. Gao, Y. Bai, B. He, C.S. Tan. A Simple Label-Free Aptamer-Based Electrochemical Biosensor for the Sensitive Detection of C-Reactive Proteins. Biosensors 12 (2022) 1180. https://dx.doi.org/10.3390/bios12121180.

D.N. Chen, L.Y. Jiang, J.X. Zhang, C. Tang, A.J. Wang, J.J. Feng. Electrochemical label-free immunoassay of HE4 using 3D PtNi nanocubes assemblies as biosensing interfaces. Microchimica Acta 189 (2022) 455. https://dx.doi.org/10.1007/s00604-022-05553-6.

A. Shiravandi, F. Yari, N. Tofigh, M. Kazemi Ashtiani, K. Shahpasand, M.H. Ghanian, F. Shekari, F. Faridbod. Earlier Detection of Alzheimer’s Disease Based on a Novel Biomarker cis P-tau by a Label-Free Electrochemical Immunosensor. Biosensors 12 (2022) 879. https://dx.doi.org/10.3390/bios12100879.

Y.W. Hartati, D.R. Komala, D. Hendrati, S. Gaffar, A. Hardianto, Y. Sofiatin, H.H. Bahti. An aptasensor using ceria electrodeposited-screen-printed carbon electrode for detection of epithelial sodium channel protein as a hypertension biomarker. Royal Society Open Science 8 (2021) 202040. https://dx.doi.org/10.1098/rsos.202040.

S.N. Zakiyyah, D.R. Eddy, M.L. Firdaus, T. Subroto, Y.W. Hartati. Screen-printed carbon electrode/natural silica-ceria nanocomposite for electrochemical aptasensor application. Journal of Electrochemical Science and Engineering 12 (2022) 1225-1242. https://dx.doi.org/10.5599/jese.1455.

A. Joshi, A.G.K. Vishnu, D. Dhruv, V. Kurpad, H.J. Pandya. Morphology-Tuned Electrochemical Immunosensing of a Breast Cancer Biomarker Using Hierarchical Palladium Nanostructured Interfaces. ACS Omega 7 (2022) 34177-34189. https://dx.doi.org/10.1021/acsomega.2c03532.

E.A. Sadrabadi, A. Benvidi, S. Yazdanparast, L. Amiri-zirtol. Fabrication of a label-free electrochemical aptasensor to detect cytochrome c in the early stage of cell apoptosis. Microchimica Acta 189 (2022) 279. https:/dx.doi.org/10.1007/s00604-022-05373-8.

N. Liu, R. Liu, J. Zhang. CRISPR-Cas12a-mediated label-free electrochemical aptamer-based sensor for SARS-CoV-2 antigen detection. Bioelectrochemistry 146 (2022) 108105. https://dx.doi.org/10810510.1016/j.bioelechem.2022.108105.

A. Barhoum, R. J. Forster. Label-free electrochemical immunosensor for picomolar detection of the cervical cancer biomarker MCM5. Analytica Chimica Acta 1225 (2022) 340226. https://dx.doi.org/34022610.1016/j.aca.2022.340226.

G. Moro, L. Ferrari, A. Angelini, F. Polo. An Impedimetric Biosensing Strategy Based on BicyclicPeptides as Bioreceptors for Monitoring h-uPA Cancer Biomarkers. Chemosensors 11 (2023) 234. https://dx.doi.org/10.3390/chemosensors11040234.

E.I. Fazrin, A.K. Sari, R. Setiyono, S. Gaffar, Y. Sofiatin, H.H. Bahti, Y.W. Hartati. The Selectivity and Stability of Epithelial Sodium Channel (ENaC) Aptamer as an Electrochemical Aptasensor. Anal. Bioanal. Electrochem. 14 (2022) 715-729. https://www.researchgate.net/publication/365977169_The_Selectivity_and_Stability_of_Epithelial_Sodium_Channel_ENaC_Aptamer_as_an_Electrochemical_Aptasensor.

S. Kasturi, Y. Eom, S.R. Torati, C.G. Kim. Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker. Journal of Industrial and Engineering Chemistry 93 (2021) 186-195. https://dx.doi.org/10.1016/j.jiec.2020.09.022.

C. Muñoz-San Martín, M. Pedrero, M. Gamella, A. Montero-Calle, R. Barderas, S. Campuzano, J.M. Pingarrón. A novel peptide-based electrochemical biosensor for the determination of a metastasis-linked protease in pancreatic cancer cells. Analytical and Bioanalytical Chemistry 412 (2020) 6177-6188. https://dx.doi.org/10.1007/s00216-020-02418-w.

A. Chellachamy Anbalagan, S.N. Sawant. Redox-labelled detection probe enabled immunoassay for simultaneous detection of multiple cancer biomarkers. Microchimica Acta 190 (2023) 86. https://dx.doi.org/10.1007/s00604-023-05663-9.

T. Xu, Y. Song, W. Gao, T. Wu, L.P. Xu, X. Zhang, S. Wang. Superwettable Electrochemical Biosensor toward Detection of Cancer Biomarkers. ACS Sensors 3 (2018) 72-78. https://dx.doi.org/10.1021/acssensors.7b00868.

B. Han, L. Dong, L. Li, L. Sha, Y. Cao, J. Zhao. Mild reduction-promoted sandwich aptasensing for simple and versatile detection of protein biomarkers. Sensors and Actuators, B: Chemical 325 (2020) 128762. https://doi.org/10.1016/j.snb.2020.128762.

S.K. Arya, P. Kongsuphol, M.K. Park. Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum. Biosensors and Bioelectronics 92 (2017) 542-548. https://dx.doi.org/10.1016/j.bios.2016.10.063.

C.Y. Lee, L.P. Wu, T.T. Chou, Y.Z. Hsieh. Functional magnetic nanoparticles-assisted electrochemical biosensor for eosinophil cationic protein in cell culture. Sensors and Actuators, B: Chemical 257 (2018) 672-677. https://dx.doi.org/10.1016/j.snb.2017.11.033.

M. You, S. Yang, Y. An, F. Zhang, P. He. A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. Journal of Electroanalytical Chemistry 862 (2020) 114017. https://dx.doi.org/10.1016/j.jelechem.2020.114017.

H. Rezaei, M. Motovali-bashi, S. Radfar. An enzyme-free electrochemical biosensor for simultaneous detection of two hemophilia A biomarkers: Combining target recycling with quantum dots-encapsulated metal-organic frameworks for signal amplification. Analytica Chimica Acta 1092 (2019) 66-74. https://dx.doi.org/10.1016/j.aca.2019.09.037.

Y. Dai, R.A. Somoza, L. Wang, J.F. Welter, Y. Li, A.I. Caplan, C.C. Liu. Exploring the Trans‐Cleavage Activity of CRISPR‐Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angewandte Chemie 131 (2019) 17560-17566. https://dx.doi.org/10.1002/ange.201910772.

S.S. Mahshid, A. Dabdoub. Development of a novel electrochemical immuno-biosensor for circulating biomarkers of the inner ear. Biosensors and Bioelectronics 165 (2020) 112369. https://dx.doi.org/10.1016/j.bios.2020.112369.

F. Hakimian, H. Ghourchian. Ultrasensitive electrochemical biosensor for detection of microRNA-155 as a breast cancer risk factor. Analytica Chimica Acta 1136 (2020) 1-8. https://dx.doi.org/10.1016/j.aca.2020.08.039.

D. Ou, D. Sun, X. Lin, Z. Liang, Y. Zhong, Z. Chen. A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. Journal of Materials Chemistry B 7 (2019) 3661-3669. https://dx.doi.org/10.1039/c9tb00472f.

J. Zhu, H. Gan, J. Wu, H. Ju. Molecular Machine Powered Surface Programmatic Chain Reaction for Highly Sensitive Electrochemical Detection of Protein. Analytical Chemistry 90 (2018) 5503-5508. https://dx.doi.org/10.1021/acs.analchem.8b01217.

S. Akbari Nakhjavani, B. Khalilzadeh, P. Samadi Pakchin, R. Saber, M.H. Ghahremani, Y. Omidi. A highly sensitive and reliable detection of CA15-3 in patient plasma with electrochemical biosensor labeled with magnetic beads. Biosensors and Bioelectronics 122 (2018) 8-15. https://dx.doi.org/10.1016/j.bios.2018.08.047.

L. Liu, D. Deng, D. Wu, W. Hou, L. Wang, N. Li, Z. Sun. Duplex-specific nuclease-based electrochemical biosensor for the detection of microRNAs by conversion of homogeneous assay into surface-tethered electrochemical analysis. Analytica Chimica Acta 1149 (2021) 338199. https://dx.doi.org/33819910.1016/j.aca.2021.338199.

S. Chanarsa, J. Jakmunee, K. Ounnunkad. A sandwich-like configuration with a signal amplification strategy using a methylene blue/aptamer complex on a heterojunction 2D MoSe2/2D WSe2 electrode: Toward a portable and sensitive electrochemical alpha-fetoprotein immunoassay. Frontiers in Cellular and Infection Microbiology 12 (2022) 1-16. https://dx.doi.org/10.3389/fcimb.2022.916357.

N. Krathumkhet, T. Imae, F. ming Wang, C.C. Yuan, J. Manidae Lumban Gaol, N. Paradee. Electrochemical immunosensing by carbon ink/carbon dot/ZnO-labeled-Ag@polypyrrole composite biomarker for CA-125 ovarian cancer detection. Bioelectrochemistry 152 (2023) 108430. https://dx.doi.org/10.1016/j.bioelechem.2023.108430.

R. Ghanbari, A. Attaripour Isfahani, S. Pirmoradian, H. Rezaei, S. Radfar, M. Kheirollahi. A rapid and simple method for simultaneous determination of three breast cancer related microRNAs based on magnetic nanoparticles modified with S9.6 antibody. Analytical Biochemistry 665 (2023) 115052. https://doi.org/10.1016/j.ab.2023.115052.

S. Wignarajah, I. Chianella, I.E. Tothill. Development of Electrochemical Immunosensors for HER-1 and HER-2 Analysis in Serum for Breast Cancer Patients. Biosensors 13 (2023) 355. https://dx.doi.org/10.3390/bios13030355.

A. Khodadoust, N. Nasirizadeh, S.M. Seyfati, R.A. Taheri, M. Ghanei, H. Bagheri. High-performance strategy for the construction of electrochemical biosensor for simultaneous detection of miRNA-141 and miRNA-21 as lung cancer biomarkers. Talanta 252 (2023) 123863. https://dx.doi.org/10.1016/j.talanta.2022.123863.

H. Wang, W. Yuan, L. Zhang, B. Xie, Q. Cheng. Dual-Labeled Octahedral Gold and Magnetic Microsphere Electrochemical Immunosensor for Ultrasensitive Determination of Carbohydrate Antigen-199 (CA199) by Differential Pulse Voltammetry (DPV). Analytical Letters (2023) 841-854. https://doi.org/10.1080/00032719.2023.2227907.

L.D.S. Freire, C.M. Ruzo, B. Salgado, A. Mar, D. Gandarilla, Y. Romaguera-barcelay, A.P.M. Tavares, M. Goreti, F. Sales, I. Cordeiro, J. Dias, B. Lalwani, R. Matos, H.F. Filho, S. Astolfi-filho. An Electrochemical Immunosensor Based on Carboxylated Graphene / SPCE for IgG-SARS-CoV-2. Biosensors 12 (2022) 1161. https://doi.org/10.3390/bios12121161.

S. Guerrero, E. Sánchez-Tirado, L. Agüí, A. González-Cortés, P. Yáñez-Sedeño, J.M. Pingarrón. Monitoring autoimmune diseases by bioelectrochemical detection of autoantibodies. Application to the determination of anti-myelin basic protein autoantibodies in serum of multiple sclerosis patients. Talanta 243 (2022) 123304. https://dx.doi.org/10.1016/j.talanta.2022.123304.

R. Antiochia. Developments in biosensors for CoV detection and future trends. Biosensors and Bioelectronics 173 (2021) 112777. https://doi.org/10.1016/j.bios.2020.112777.

A. Haleem, M. Javaid, R.P. Singh, R. Suman, S. Rab. Biosensors applications in medical field: A brief review. Sensors International 2 (2021) 100100. https://doi.org/10.1016/j.sintl.2021.100100.

S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, W. Zhang. Progress of new label-free techniques for biosensors: A review. Critical Reviews in Biotechnology 36 (2016) 465-481. https://dx.doi.org/10.3109/07388551.2014.991270.

M.M. Pereira da Silva Neves, M.B. González-García, D. Hernández-Santos, P. Fanjul-Bolado. Future trends in the market for electrochemical biosensing. Current Opinion in Electrochemistry 10 (2018) 107-111. https://dx.doi.org/10.1016/j.coelec.2018.05.002.

Downloads

Published

11-05-2024 — Updated on 11-05-2024

How to Cite

Lestari, T. F. H., Irkham, I., Pratomo, U., Gaffar, S., Zakiyyah, S. N., Rahmawati, I., Topkaya, S. N., & Hartati, Y. W. (2024). Label-free and label-based electrochemical detection of disease biomarker proteins . ADMET and DMPK, 12(3), 463–486. https://doi.org/10.5599/admet.2162

Issue

Section

Reviews

Funding data

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.