Monolayer graphene/platinum-modified 3D origami microfluidic paper-based biosensor for smartphone-assisted biomarkers detection

Original scientific article

Authors

  • Arda Fridua Putra Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia https://orcid.org/0009-0009-3816-459X
  • Annisa Septyana Ningrum Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia https://orcid.org/0009-0009-9833-8328
  • Suyanto Suyanto Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia https://orcid.org/0009-0008-6861-6246
  • Vania Mitha Pratiwi Department of Materials Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia https://orcid.org/0000-0001-8300-7520
  • Muhammad Yusuf Hakim Widianto Department of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia https://orcid.org/0000-0002-1720-9754
  • Irkham Irkham Department of Chemistry, University of Padjadjaran, Sumedang 45363, Indonesia https://orcid.org/0000-0001-9938-2931
  • Wulan Tri Wahyuni Department of Chemistry, Institut Pertanian Bogor (IPB) University, Bogor 16680, Indonesia https://orcid.org/0000-0002-3071-4974
  • Isnaini Rahmawati Department of Chemistry, University of Indonesia, Depok 16424, Indonesia https://orcid.org/0000-0003-1327-592X
  • Fu-Ming Wang Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan and Graduate Institute of Energy and Sustainability Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan https://orcid.org/0000-0003-4407-3554
  • Chi-Hsien Huang Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia and Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24031, Taiwan https://orcid.org/0000-0003-0369-3124
  • Ruri Agung Wahyuono Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia https://orcid.org/0000-0002-6937-9907

DOI:

https://doi.org/10.5599/admet.2833

Keywords:

Colorimetry, diagnostic kit, dopamine, NADH, nanocatalyst

Abstract

Background and purpose: Imbalances in biomarkers such as dopamine and NADH are linked to neurological and metabolic disorders, including Parkinson’s disease, depression, and stroke, underscoring the need for rapid and accessible diagnostics. This study presents a smartphone-assisted, 3D origami microfluidic paper-based analytical device (µPAD) modified with photochemically synthesized graphene/platinum (G/Pt) nanocatalysts for multiplex colorimetric detection of dopamine and NADH. Experimental approach: G/Pt catalysts were prepared using 2.5 to 10 mM Pt precursors under UV irradiation. µPADs were laser-printed on commercial-grade filter paper, patterned, and folded into three layers of 3D Origami. Key results: The optimized 10 mM G/Pt catalyst significantly improved reaction rates (18× faster), leading to a rapid detection time constant of 6.69 and 4.59 s for dopamine and NADH, respectively. Furthermore, the utilization of 10 mM G/Pt catalyst increased colour intensity (2.48×) on the µPAD platform. An application for smartphones integrated with an image processing algorithm was developed using Kotlin to enable automatic quantification of colorimetric signals from saturation and hue channels for dopamine and NADH, respectively. The detection exhibited the lowest mean absolute percentage errors of 0.52 and 0.07 % as well as a limit of detection of 0.56 and 0.99 mM for dopamine and NADH, respectively. Conclusion: The 3D origami structure facilitates efficient fluid handling and multiplex detection, while the nanocatalyst modification improves pore infiltration and sensitivity. This work demonstrates, for the first time, a cost-effective, portable, and high-performance biosensor for dual biomarker detection, offering substantial promise for point-of-care diagnostics in neurological and metabolic health monitoring.

 

Downloads

Download data is not yet available.

References

[1] F. Ghorbani Valikchali, M. Rahimnejad, A. Ramiar, M. Ezoji. Diagnostics Devices for Improving the World: μPADs Integrated with Smartphone for Colorimetric Detection of Dopamine. International Journal of Engineering 35 (2022) 1723-1727. https://doi.org/10.5829/ije.2022.35.09C.07 DOI: https://doi.org/10.5829/IJE.2022.35.09C.07

[2] A. Aliprandi, M. Longoni, L. Stanzani, L. Tremolizzo, M. Vaccaro, B. Begni, G. Galimberti, R. Garofolo, C. Ferrarese. Increased plasma glutamate in stroke patients might be linked to altered platelet release and uptake. Journal of Cerebral Blood Flow and Metabolism 25(4) (2005) 513-519. https://doi.org/10.1038/sj.jcbfm.9600039 DOI: https://doi.org/10.1038/sj.jcbfm.9600039

[3] M. Gutiérrez-Capitán, A. Baldi, C. Fernández-Sánchez. Electrochemical Paper-Based Biosensor Devices for Rapid Detection of Biomarkers. Sensors 20(4) (2020) 967. https://doi.org/10.3390/s20040967 DOI: https://doi.org/10.3390/s20040967

[4] H. Zhang, E. Smith, W. Zhang, A. Zhou. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine. Biomed Microdevices 21 (2019) 48. https://doi.org/10.1007/s10544-019-0388-7 DOI: https://doi.org/10.1007/s10544-019-0388-7

[5] S.H. Baek, C. Park, J. Jeon, S. Park. Three-Dimensional Paper-Based Microfluidic Analysis Device for Simultaneous Detection of Multiple Biomarkers with a Smartphone. Biosensors 10(11) (2020) 187. https://doi.org/10.3390/BIOS10110187 DOI: https://doi.org/10.3390/bios10110187

[6] D. Calabria, M. Zangheri, I. Trozzi, E. Lazzarini, A. Pace, M. Mirasoli, M. Guardigli. Smartphone-based chemiluminescent origami µpad for the rapid assessment of glucose blood levels. Biosensors 11(10) (2021) 381. https://doi.org/10.3390/bios11100381 DOI: https://doi.org/10.3390/bios11100381

[7] C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao. Recent advances in electrochemical glucose biosensors: A review. RSC Advances 3 (2013) 4473-4491. https://doi.org/10.1039/c2ra22351a DOI: https://doi.org/10.1039/c2ra22351a

[8] C. Laghlimi, A. Moutcine, A. Chtaini, J. Isaad, A. Soufi, Y. Ziat, H. Amhamdi, H. Belkhanchi. Recent advances in electrochemical sensors and biosensors for monitoring drugs and metabolites in pharmaceutical and biological samples. ADMET and DMPK 11(2) (2023) 151-173. https://doi.org/10.5599/admet.1709 DOI: https://doi.org/10.5599/admet.1709

[9] W. Zheng, K. Wang, H. Xu, C. Zheng, B. Cao, Q. Qin, Q. Jin, D. Cui. Strategies for the detection of target analytes using microfluidic paper-based analytical devices. Analytical and Bioanalytical Chemistry 413 (2021) 2429-2445. https://doi.org/10.1007/s00216-021-03213-x DOI: https://doi.org/10.1007/s00216-021-03213-x

[10] B. Kuswandi, M.A. Hidayat, E. Noviana. Paper-based sensors for rapid important biomarkers detection. Biosensors and Bioelectronics: X 12 (2022) 100246. https://doi.org/10.1016/J.BIOSX.2022.100246 DOI: https://doi.org/10.1016/j.biosx.2022.100246

[11] Y. Xia, J. Hu, S. Zhao, L. Tao, Z. Li, T. Yue, J. Kong. Build-in sensors and analysis algorithms aided smartphone-based sensors for point-of-care tests. Biosensors and Bioelectronics: X 11 (2022) 100195. https://doi.org/10.1016/J.BIOSX.2022.100195 DOI: https://doi.org/10.1016/j.biosx.2022.100195

[12] I. Lewińska, M. Speichert, M. Granica, Ł. Tymecki. Colorimetric point-of-care paper-based sensors for urinary creatinine with smartphone readout. Sensors and Actuators B 340 (2021) 129915. https://doi.org/10.1016/j.snb.2021.129915 DOI: https://doi.org/10.1016/j.snb.2021.129915

[13] L.M. Fu, Y.N. Wang. Detection methods and applications of microfluidic paper-based analytical devices. TrAC - Trends in Analytical Chemistry 107 (2018) 196-211. https://doi.org/10.1016/j.trac.2018.08.018 DOI: https://doi.org/10.1016/j.trac.2018.08.018

[14] Q.H. Nguyen, M. Il Kim. Nanomaterial-mediated paper-based biosensors for colorimetric pathogen detection. TrAC Trends in Analytical Chemistry 132 (2020) 116038. https://doi.org/10.1016/J.TRAC.2020.116038 DOI: https://doi.org/10.1016/j.trac.2020.116038

[15] W. Li, B. Chen, H. Zhang, Y. Sun, J. Wang, J. Zhang, Y. Fu. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosensors and Bioelectronics 66 (2015) 251-258. https://doi.org/10.1016/j.bios.2014.11.032 DOI: https://doi.org/10.1016/j.bios.2014.11.032

[16] F. Xu, Y. Sun, Y. Zhang, Y. Shi, Z. Wen, Z. Li. Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochemistry Communications 13 (2011) 1131-1134. https://doi.org/10.1016/j.elecom.2011.07.017 DOI: https://doi.org/10.1016/j.elecom.2011.07.017

[17] L.N. Zhang, H.H. Deng, F.L. Lin, X.W. Xu, S.H. Weng, A.L. Liu, X.H. Lin, X.H. Xia, W. Chen. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Analytical Chemistry 86 (2014) 2711-2718. https://doi.org/10.1021/ac404104j DOI: https://doi.org/10.1021/ac404104j

[18] K. V. Ragavan, P. Egan, S. Neethirajan. Multi mimetic Graphene Palladium nanocomposite based colorimetric paper sensor for the detection of neurotransmitters. Sensors and Actuators B 273 (2018) 1385-1394. https://doi.org/10.1016/j.snb.2018.07.048 DOI: https://doi.org/10.1016/j.snb.2018.07.048

[19] M. Sakamoto, T. Majima. Photochemistry for the synthesis of noble metal nanoparticles. Bulletin of the Chemical Society of Japan 83(10) (2010) 1133-1154. https://doi.org/10.1246/bcsj.20100097 DOI: https://doi.org/10.1246/bcsj.20100097

[20] K. Nakada, A. Ishii. Graphene Simulation, InTech, London, United Kingdom, 2011, p. 388. ISBN: 978-953-307-556-3. https://doi.org/10.5772/20477 DOI: https://doi.org/10.5772/20477

[21] T. Yamasaki, A. Kuroda, T. Kato, J. Nara, J. Koga, T. Uda, K. Minami, T. Ohno. Multi-axis decomposition of density functional program for strong scaling up to 82,944 nodes on the K computer: Compactly folded 3D-FFT communicators in the 6D torus network. Computer Physics Communications 244 (2019) 264-276. https://doi.org/10.1016/j.cpc.2019.04.008 DOI: https://doi.org/10.1016/j.cpc.2019.04.008

[22] A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology 4(1) (2019) 97-118. https://doi.org/10.17509/ijost.v4i1.15806 DOI: https://doi.org/10.17509/ijost.v4i1.15806

[23] L. Morsch, S. Farmer, K. Cunningham. Infrared Spectra of Some Common Functional Groups. in: Organic Chemistry, LibreTexts, 2022: pp. 1-10. https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_(Morsch_et_al.) (accessed February 21, 2024).

[24] E. Gharibshahi, E. Saion, A. Ashraf, L. Gharibshahi. Size‐Controlled and Optical Properties of Platinum Nanoparticles by Gamma Radiolytic Synthesis. Applied Radiation and Isotopes 130 (2017) 211-217. https://doi.org/10.1016/j.apradiso.2017.09.012 DOI: https://doi.org/10.1016/j.apradiso.2017.09.012

[25] F.T. Johra, J.W. Lee, W.G. Jung. Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry 20 (2014) 2883-2887. https://doi.org/10.1016/j.jiec.2013.11.022 DOI: https://doi.org/10.1016/j.jiec.2013.11.022

[26] S.A. Putri, Y. Yamaguchi, T.A. Ariasoca, M.Y.H. Widianto, K. Tagami, M. Saito. Electronic band structures of group-IV two-dimensional materials: Spin-orbit coupling and group theoretical analysis. Surface Science 714 (2021) 121917. https://doi.org/10.1016/j.susc.2021.121917 DOI: https://doi.org/10.1016/j.susc.2021.121917

[27] Y. Wang, J. Liu, L. Liu, D.D. Sun. High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid. Nanoscale Research Letters 6 (2011) 241. https://doi.org/10.1186/1556-276X-6-241 DOI: https://doi.org/10.1186/1556-276X-6-241

[28] M. Harada, H. Einaga. Formation mechanism of Pt particles by photoreduction of Pt ions in polymer solutions. Langmuir 22 (2006) 2371-2377. https://doi.org/10.1021/la052378m DOI: https://doi.org/10.1021/la052378m

[29] Y. Deng, C. Peng, M. Dai, D. Lin, I. Ali, S.S. Alhewairini, X. Zheng, G. Chen, J. Li, I. Naz. Recent development of super-wettable materials and their applications in oil-water separation. Journal of Cleaner Production 266 (2020) 121624. https://doi.org/10.1016/j.jclepro.2020.121624 DOI: https://doi.org/10.1016/j.jclepro.2020.121624

[30] C. Liu, F.A. Gomez, Y. Miao, P. Cui, W. Lee. A colourimetric assay system for dopamine using microfluidic paper-based analytical devices. Talanta 194 (2019) 171-176. https://doi.org/10.1016/J.TALANTA.2018.10.039 DOI: https://doi.org/10.1016/j.talanta.2018.10.039

[31] M.A.A. Ramadan, I. Almasri, G. Khayal. Spectrophotometric determination of dopamine in bulk and dosage forms using 2,4-dinitrophenylhydrazine. Turkish Journal of Pharmaceutical Sciences 17(6) (2020) 679-685. https://doi.org/10.4274/tjps.galenos.2019.25902 DOI: https://doi.org/10.4274/tjps.galenos.2019.25902

[32] D. Lavogina, H. Lust, M.J. Tahk, T. Laasfeld, H. Vellama, N. Nasirova, M. Vardja, K.L. Eskla, A. Salumets, A. Rinken, J. Jaal. Revisiting the Resazurin‐Based Sensing of Cellular Viability: Widening the Application Horizon. Biosensors 12(4) (2022) 196. https://doi.org/10.3390/bios12040196 DOI: https://doi.org/10.3390/bios12040196

[33] M. Fotouhi, S. Seidi, Y. Razeghi, S. Torfinezhad. A dual-mode assay kit using a portable potentiostat connected to a smartphone via Bluetooth communication and a potential-power angle-based paper device susceptible for low-cost point-of-care testing of iodide and dopamine. Analytica Chimica Acta 1287 (2024) 342127. https://doi.org/10.1016/j.aca.2023.342127 DOI: https://doi.org/10.1016/j.aca.2023.342127

[34] N. Agrawal, D. Baghel, D.N. Prasad, E. Kohli. Lab-on-Paper Approach in lieu of Microfluidic Paper Assisted Platform: ‘ASSURED’ sensing through Modified Graphene Quantum Dots. ChemistrySelect 9 (2024) e202303335. https://doi.org/10.1002/slct.202303335 DOI: https://doi.org/10.1002/slct.202303335

[35] Y. Yan, X. Huang, L. Yuan, Y. Tang, W. Zhu, H. Du, J. Nie, L. Zhang, S. Liao, X. Tang, Y. Zhang. Single-step batch fabrication of microfluidic paper-based analytical devices with a 3D printer and their applications in nanoenzyme-enhanced visual detection of dopamine. Analytical and Bioanalytical Chemistry 416 (2024) 4131-4141. https://doi.org/10.1007/s00216-024-05337-2 DOI: https://doi.org/10.1007/s00216-024-05337-2

[36] O. Heidary, M. Akhond, B. Hemmateenejad. A microfluidic paper-based analytical device for iodometric titration of ascorbic acid and dopamine. Microchemical Journal 182 (2022) 107886. https://doi.org/10.1016/j.microc.2022.107886 DOI: https://doi.org/10.1016/j.microc.2022.107886

[37] K.H. Chen, C.C. Liu, S.Y. Lu, S.J. Chen, F. Sheu, L.M. Fu. Rapid microfluidic analysis detection system for sodium dehydroacetate in foods. Chemical Engineering Journal 427 (2022) 131530. https://doi.org/10.1016/j.cej.2021.131530 DOI: https://doi.org/10.1016/j.cej.2021.131530

Published

20-07-2025

Issue

Section

Pharmaceutical and biomedical analysis

How to Cite

Monolayer graphene/platinum-modified 3D origami microfluidic paper-based biosensor for smartphone-assisted biomarkers detection: Original scientific article. (2025). ADMET and DMPK, 13(4), 2833. https://doi.org/10.5599/admet.2833

Funding data

Similar Articles

1-10 of 65

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)