Metabolic insights into the warfarin-mango interaction: A pilot study integrating clinical observations and metabolomics

Original scientific article

Authors

DOI:

https://doi.org/10.5599/admet.2740

Keywords:

Biomarker, drug interaction, 1H-NMR-based metabolomics, Metabolites, personalized anticoagulant

Abstract

Background and purpose: Warfarin is a widely prescribed oral anticoagulant for the prevention and treatment of thromboembolic events, frequently used in patients with atrial fibrillation. However, its effectiveness is often challenged by a narrow therapeutic range and significant inter-patient variability in dosage requirements and treatment responses. Drug interactions remain a critical concern, as they heighten the risk of supratherapeutic anticoagulation. Reports of interactions between warfarin and mango have documented cases of elevated international normalized ratio (INR) following mango consumption, although the underlying molecular mechanisms remain unclear. Experimental approach: This study investigates the molecular basis of the warfarin-mango interaction using proton nuclear magnetic resonance (1H-NMR)-based metabolomics. In a pre-post design study, plasma samples were collected from patients on long-term warfarin therapy (>6 months) who exhibited supratherapeutic INR levels after consuming mango. After a two-week discontinuation of mango consumption, additional plasma samples were collected once INR levels returned to the therapeutic range. Key results and conclusion: This is the first study to utilize 1H-NMR metabolomics to explore warfarin-mango interactions, integrating clinical observations with metabolic insights. Findings suggest that a reduction in glycerol 3-phosphate may impair glycolysis, disrupting platelet activation and contributing to the elevated INR levels observed in all patients. These results underscore the potential for 1H-NMR metabolomics to elucidate drug-food interactions, advancing personalized anticoagulant management and improving patient safety.

Downloads

Download data is not yet available.

References

[1] J. Lähteenmäki, A.L. Vuorinen, M. Lehto, M. Niemi, M.M. Forsberg. Pharmacogenetics of warfarin and healthcare costs - Real-world data analysis. Pharmacoepidemiology and drug safety 32 (2023) 382-386. https://doi.org/10.1002/pds.5585

[2] B. Sombat, S. Tongkaew, A. Nilwaranon, M. Mungthin, K. Jongcherdchootrakul, T. Lertwanichwattana. Incidence and risk factors of warfarin therapy complications in community hospitals, central and eastern regions, Thailand: a retrospective, multicenter, cohort study. BMC research notes 16 (2023) 104. https://doi.org/10.1186/s13104-023-06383-2

[3] S.S. Ng, S. Nathisuwan, A. Phrommintikul, N. Chaiyakunapruk. Cost-effectiveness of warfarin care bundles and novel oral anticoagulants for stroke prevention in patients with atrial fibrillation in Thailand. Thrombosis research 185 (2020) 63-71. https://doi.org/10.1016/j.thromres.2019.11.012

[4] I. Piatkov, C. Rochester, T. Jones, S. Boyages. Warfarin toxicity and individual variability-clinical case. Toxins (Basel) 2 (2010) 2584-2592. https://doi.org/10.3390/toxins2112584

[5] J. Monterrey-Rodríguez. Interaction between warfarin and mango fruit. The Annals of pharmacotherapy 36 (2002) 940-941. https://doi.org/10.1177/106002800203600504

[6] D.A. Norwood, C.K. Parke, L.R. Rappa. A Comprehensive Review of Potential Warfarin-Fruit Interactions. Journal of Pharmacy Practice 28 (2015) 561-571. https://doi.org/10.1177/0897190014544823

[7] C.S.S. Tan, S.W.H. Lee. Warfarin and food, herbal or dietary supplement interactions: A systematic review. British journal of clinical pharmacology 87 (2021) 352-374. https://doi.org/10.1111/bcp.14404

[8] P.M. Leite, M.A.P. Martins, M.d.G. Carvalho, R.O. Castilho. Mechanisms and interactions in concomitant use of herbs and warfarin therapy: An updated review. Biomedicine & Pharmacotherapy 143 (2021) 112103. https://doi.org/https://doi.org/10.1016/j.biopha.2021.112103

[9] J. Hirsh, V. Fuster, J. Ansell, J.L. Halperin. American Heart Association/American College of Cardiology Foundation Guide to Warfarin Therapy. Circulation 107 (2003) 1692-1711. https://doi.org/doi:10.1161/01.CIR.0000063575.17904.4E

[10] S.Y. Kim, J.Y. Kang, J.H. Hartman, S.H. Park, D.R. Jones, C.H. Yun, G. Boysen, G.P. Miller. Metabolism of R- and S-warfarin by CYP2C19 into four hydroxywarfarins. Drug metabolism letters 6 (2012) 157-164. https://doi.org/10.2174/1872312811206030002

[11] A.A. Izzo, G. Di Carlo, F. Borrelli, E. Ernst. Cardiovascular pharmacotherapy and herbal medicines: the risk of drug interaction. International Journal of Cardiology 98 (2005) 1-14. https://doi.org/https://doi.org/10.1016/j.ijcard.2003.06.039

[12] H. Kim, M.J. Castellon-Chicas, S. Arbizu, S.T. Talcott, N.L. Drury, S. Smith, S.U. Mertens-Talcott. Mango (Mangifera indica L.) Polyphenols: Anti-Inflammatory Intestinal Microbial Health Benefits, and Associated Mechanisms of Actions. Molecules (Basel, Switzerland) 26 (2021). https://doi.org/10.3390/molecules26092732

[13] H. Yamazaki, T. Shimada. Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by human cytochrome P450 enzymes. Xenobiotica 29 (1999) 231-241. https://doi.org/10.1080/004982599238632

[14] A. Duda-Chodak, T. Tarko. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules (Basel, Switzerland) 28 (2023). https://doi.org/10.3390/molecules28062536

[15] E. Fliszár-Nyúl, V. Mohos, R. Csepregi, P. Mladěnka, M. Poór. Inhibitory effects of polyphenols and their colonic metabolites on CYP2D6 enzyme using two different substrates. Biomedicine & Pharmacotherapy 131 (2020) 110732. https://doi.org/10.1016/j.biopha.2020.110732

[16] P. Tajai, G. Konguthaithip, T. Chaikhaeng, C. Jaikang. Glyphosate-based herbicide metabolic profiles in human urine samples through proton nuclear magnetic resonance analysis. ADMET & DMPK 12 (2024) 957-970. https://doi.org/10.5599/admet.2476

[17] A.C. Dona, M. Kyriakides, F. Scott, E.A. Shephard, D. Varshavi, K. Veselkov, J.R. Everett. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Computational and Structural Biotechnology Journal 14 (2016) 135-153. https://doi.org/https://doi.org/10.1016/j.csbj.2016.02.005

[18] D.S. Wishart, T. Jewison, A.C. Guo, M. Wilson, C. Knox, Y. Liu, Y. Djoumbou, R. Mandal, F. Aziat, E. Dong, S. Bouatra, I. Sinelnikov, D. Arndt, J. Xia, P. Liu, F. Yallou, T. Bjorndahl, R. Perez-Pineiro, R. Eisner, F. Allen, V. Neveu, R. Greiner, A. Scalbert. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Research 41 (2012) D801-D807. https://doi.org/10.1093/nar/gks1065

[19] T. Claridge. Software Review of MNova: NMR Data Processing, Analysis, and Prediction Software. Journal of Chemical Information and Modeling 49 (2009) 1136-1137. https://doi.org/10.1021/ci900090d

[20] Z. Pang, Y. Lu, G. Zhou, F. Hui, L. Xu, C. Viau, Aliya F. Spigelman, Patrick E. MacDonald, David S. Wishart, S. Li, J. Xia. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Research 52 (2024) W398-W406. https://doi.org/10.1093/nar/gkae253

[21] Y. Zhou, B. Zhou, L. Pache, M. Chang, A.H. Khodabakhshi, O. Tanaseichuk, C. Benner, S.K. Chanda. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature communications 10 (2019) 1523. https://doi.org/10.1038/s41467-019-09234-6

[22] P. Tajai, B.I. Fedeles, T. Suriyo, P. Navasumrit, J. Kanitwithayanun, J.M. Essigmann, J. Satayavivad. An engineered cell line lacking OGG1 and MUTYH glycosylases implicates the accumulation of genomic 8-oxoguanine as the basis for paraquat mutagenicity. Free radical biology & medicine 116 (2018) 64-72. https://doi.org/10.1016/j.freeradbiomed.2017.12.035

[23] M. Ghatge, G.D. Flora, M.K. Nayak, A.K. Chauhan. Platelet Metabolic Profiling Reveals Glycolytic and 1-Carbon Metabolites Are Essential for GP VI–Stimulated Human Platelets—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology 44 (2024) 409-416. https://doi.org/doi:10.1161/ATVBAHA.123.319821

[24] P.P. Kulkarni, M. Ekhlak, D. Dash. Energy metabolism in platelets fuels thrombus formation: Halting the thrombosis engine with small-molecule modulators of platelet metabolism. Metabolism 145 (2023) 155596. https://doi.org/10.1016/j.metabol.2023.155596

[25] G.D. Flora, M.K. Nayak, M. Ghatge, A.K. Chauhan. Metabolic targeting of platelets to combat thrombosis: dawn of a new paradigm? Cardiovascular Research 119 (2023) 2497-2507. https://doi.org/10.1093/cvr/cvad149

[26] C.L. Sake, A.J. Metcalf, M. Meagher, J. Di Paola, K.B. Neeves, N.R. Boyle. Isotopically nonstationary (13)C metabolic flux analysis in resting and activated human platelets. Metabolic engineering 69 (2022) 313-322. https://doi.org/10.1016/j.ymben.2021.12.007

[27] P.P. Kulkarni, A. Tiwari, N. Singh, D. Gautam, V.K. Sonkar, V. Agarwal, D. Dash. Aerobic glycolysis fuels platelet activation: small-molecule modulators of platelet metabolism as anti-thrombotic agents. Haematologica 104 (2019) 806-818. https://doi.org/10.3324/haematol.2018.205724

[28] P.P. Kulkarni, M. Ekhlak, V. Singh, V. Kailashiya, N. Singh, D. Dash. Fatty acid oxidation fuels agonist-induced platelet activation and thrombus formation: Targeting β-oxidation of fatty acids as an effective anti-platelet strategy. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 37 (2023) e22768. https://doi.org/10.1096/fj.202201321RR.

[29] M. Aibibula, K.M. Naseem, R.G. Sturmey. Glucose metabolism and metabolic flexibility in blood platelets. Journal of thrombosis and haemostasis : JTH 16 (2018) 2300-2314. https://doi.org/10.1111/jth.14274

[30] S. Ravi, B. Chacko, H. Sawada, P.A. Kramer, M.S. Johnson, G.A. Benavides, V. O'Donnell, M.B. Marques, V.M. Darley-Usmar. Metabolic plasticity in resting and thrombin activated platelets. PLoS One 10 (2015) e0123597. https://doi.org/10.1371/journal.pone.0123597

[31] P.P. Kulkarni, M. Ekhlak, V.K. Sonkar, D. Dash. Mitochondrial ATP generation in stimulated platelets is essential for granule secretion but dispensable for aggregation and procoagulant activity. Haematologica 107 (2022) 1209-1213. https://doi.org/10.3324/haematol.2021.279847

[32] G.D. Flora, M.K. Nayak, M. Ghatge, M. Kumskova, R.B. Patel, A.K. Chauhan. Mitochondrial pyruvate dehydrogenase kinases contribute to platelet function and thrombosis in mice by regulating aerobic glycolysis. Blood advances 7 (2023) 2347-2359. https://doi.org/10.1182/bloodadvances.2023010100

[33] M.K. Nayak, M. Ghatge, G.D. Flora, N. Dhanesha, M. Jain, K.R. Markan, M.J. Potthoff, S.R. Lentz, A.K. Chauhan. The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood 137 (2021) 1658-1668. https://doi.org/10.1182/blood.2020007140

[34] E. Possik, A. Al-Mass, M.L. Peyot, R. Ahmad, F. Al-Mulla, S.R.M. Madiraju, M. Prentki. New Mammalian Glycerol-3-Phosphate Phosphatase: Role in β-Cell, Liver and Adipocyte Metabolism. Frontiers in Endocrinology 12 (2021) 706607. https://doi.org/10.3389/fendo.2021.706607

[35] R.A. Harkness. Metabolism at a Glance, 2nd Edition. J.G. Salway. Journal of Inherited Metabolic Disease 22 (1999) 914-914. https://doi.org/10.1023/A:1005641407072

[36] D.L. Nelson, Lehninger principles of biochemistry, Fourth edition. New York : W.H. Freeman, 2005., 2005. https://search.library.wisc.edu/catalog/999964334502121

[37] A.L. Orr, D. Ashok, M.R. Sarantos, R. Ng, T. Shi, A.A. Gerencser, R.E. Hughes, M.D. Brand. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase. PLoS One 9 (2014) e89938. https://doi.org/10.1371/journal.pone.0089938

[38] R.H. Houtkooper, H. Akbari, H. van Lenthe, W. Kulik, R.J. Wanders, M. Frentzen, F.M. Vaz. Identification and characterization of human cardiolipin synthase. FEBS Letters 580 (2006) 3059-3064. https://doi.org/10.1016/j.febslet.2006.04.054

[39] H.F. Tian, J.M. Feng, J.F. Wen. The evolution of cardiolipin biosynthesis and maturation pathways and its implications for the evolution of eukaryotes. BMC evolutionary biology 12 (2012) 32. https://doi.org/10.1186/1471-2148-12-32

[40] X. Ou, C. Ji, X. Han, X. Zhao, X. Li, Y. Mao, L.L. Wong, M. Bartlam, Z. Rao. Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (GPD1). Journal of molecular biology 357 (2006) 858-869. https://doi.org/10.1016/j.jmb.2005.12.074

[41] Y.Q. Chen, M.S. Kuo, S. Li, H.H. Bui, D.A. Peake, P.E. Sanders, S.J. Thibodeaux, S. Chu, Y.W. Qian, Y. Zhao, D.S. Bredt, D.E. Moller, R.J. Konrad, A.P. Beigneux, S.G. Young, G. Cao. AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. The Journal of biological chemistry 283 (2008) 10048-10057. https://doi.org/10.1074/jbc.M708151200

[42] A. Prola, F. Pilot-Storck. Cardiolipin Alterations during Obesity: Exploring Therapeutic Opportunities. Biology (Basel) 11 (2022) 1638. https://www.mdpi.com/2079-7737/11/11/1638

[43] K.D. Hauff, S.Y. Choi, M.A. Frohman, G.M. Hatch. Cardiolipin synthesis is required to support human cholesterol biosynthesis from palmitate upon serum removal in Hela cells. Canadian journal of physiology and pharmacology 87 (2009) 813-820. https://doi.org/10.1139/y09-055

[44] R. Lehner, A. Kuksis. Biosynthesis of triacylglycerols. Progress in Lipid Research 35 (1996) 169-201. https://doi.org/10.1016/0163-7827(96)00005-7

[45] P. Oelkers, A. Behari, D. Cromley, J.T. Billheimer, S.L. Sturley. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. The Journal of biological chemistry 273 (1998) 26765-26771. https://doi.org/10.1074/jbc.273.41.26765

[46] T. Mashima, H. Seimiya, T. Tsuruo. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer 100 (2009) 1369-1372. https://doi.org/10.1038/sj.bjc.6605007

[47] R.A. Coleman, D.P. Lee. Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research 43 (2004) 134-176. https://doi.org/https://doi.org/10.1016/S0163-7827(03)00051-1

Published

08-06-2025

Issue

Section

Pharmacology

How to Cite

Metabolic insights into the warfarin-mango interaction: A pilot study integrating clinical observations and metabolomics: Original scientific article. (2025). ADMET and DMPK, 13(3), 2740. https://doi.org/10.5599/admet.2740

Funding data

Similar Articles

1-10 of 288

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)