Beneficial effects of bioinspired silver nanoparticles on zebrafish embryos including a gene expression study
DOI:
https://doi.org/10.5599/admet.2102Keywords:
green synthesis, biocompatibility, nanoparticle toxicity, fish embryo, zebrafish hatching (ZHE1 and ZHE2)Abstract
Background and purpose: Many sectors use nanoparticles and dispose of them in the aquatic environment without deciding the fate of these particles. Experimental approach: To identify a benign species of nanoparticles which can cause minimum harm to the aquatic environment, a comparative study was done with chemically synthesized silver nanoparticles (AgNPs) and green tea mediated synthesis (GT/AgNP) in both in vitro using human alveolar cancer cell line (A549) and normal cell line (L132), and in in vivo with zebrafish embryos. Key results: The in vitro studies revealed that GT/AgNPs were less toxic to normal cells than cancer cells. The GT/AgNPs showed high biocompatibility for zebrafish embryos monitored microscopically for their developmental stages and by cumulative hatchability studies. The reduced hatchability found in the AgNPs-treated group was correlated by differential gene expression of zebrafish hatching enzymes (ZHE) (ZHE1 and ZHE2). Conclusion: The results indicated that nanoparticles can affect the hatching of zebrafish embryos and elicit toxicity at the gene level.
Downloads
References
S. Dawadi, S. Katuwal, A. Gupta, U. Lamichhane, R. Thapa, S. Jaisi, G. Lamichhane, D.P. Bhattarai, N. Parajuli. Current research on silver nanoparticles: Synthesis, characterization, and applications. Journal of Nanomaterials 2021 (2021) 6687290. https://doi.org/10.1155/2021/6687290.
P.G. Jamkhande, N.W. Ghule, A.H. Bamer, M.G. Kalaskar. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology 53 (2019) 101174. https://doi.org/10.1016/j.jddst.2019.101174.
D.A. Mosselhy, W. He, D. Li, Y. Meng, Q. Feng. Silver nanoparticles: in vivo toxicity in zebrafish embryos and a comparison to silver nitrate. Journal of Nanoparticle Research 18 (2016) 222. https://doi.org/10.1007/s11051-016-3514-y.
L. Qiang, Z.H. Arabeyyat, Q. Xin, V.N. Paunov, I.J. Dale, R.I. Lloyd Mills, J.M. Rotchell, J. Cheng. Silver nanoparticles in Zebrafish (Danio rerio) embryos: Uptake, growth and molecular responses. International Journal of Molecular Sciences 21 (2020) 1876. https://doi.org/10.3390/ijms21051876.
D. Boyle, G.G. Goss. Effects of silver nanoparticles in early life-stage zebrafish are associated with particle dissolution and the toxicity of soluble silver. NanoImpact 12 (2018) 1-8. https://doi.org/10.1016/j.impact.2018.08.006.
J. Maheswari, M.R. Anjum, M. Sankari, G. Narasimha, S.B.N. Krishna, B. Kishori. Green synthesis, characterization and biological activities of silver nanoparticles synthesized from Neolamarkia cadamba. ADMET and DMPK 11 (2023) 573-585. https://doi.org/10.5599/admet.1793
T. Aavula, V. Narasimman, S. Ramachandran, R. Murugan, M. Ponnusamy, G.P. Pazhani. Antioxidant and Teratogenic Activities of Formulated Agar Extracted from Brown Seaweed Turbinaria conoides against Zebrafish Larvae. Evidence-Based Complementary and Alternative Medicine 2022 (2022) 3520336. https://doi.org/10.1155/2022/3520336.
B. Yashwanth, R. Pamanji, J.V. Rao. Toxicomorphomics and toxicokinetics of quinalphos on embryonic development of zebrafish (Danio rerio) and its binding affinity towards hatching enzyme, ZHE1. Aquatic Toxicology 180 (2016) 155-163. https://doi.org/10.1016/j.aquatox.2016.09.018.
K. Sano, K. Inohaya, M. Kawaguchi, N. Yoshizaki, I. Iuchi, S. Yasumasu. Purification and characterization of zebrafish hatching enzyme–an evolutionary aspect of the mechanism of egg envelope digestion. The FEBS journal 275 (2008) 5934-5946. https://doi.org/10.1111/j.1742-4658.2008.06722.x.
S. Yasumasu, M. Kawaguchi, S. Ouchi, K. Sano, K. Murata, H. Sugiyama, T. Akema, I. Iuchi. Mechanism of egg envelope digestion by hatching enzymes, HCE and LCE in medaka, Oryzias latipes. The Journal of Biochemistry 148 (2010) 439-448. https://doi.org/10.1093/jb/mvq086.
J. Kavya, G. Amsaveni, M. Nagalakshmi, K. Girigoswami, R. Murugesan, A. Girigoswami. Silver nanoparticles induced lowering of BCl2/Bax causes Dalton's Lymphoma tumour cell death in mice. Journal of Bionanoscience 7 (2013) 276-281. https://doi.org/10.1166/jbns.2013.1135.
V. Keerthana, A. Girigoswami, S. Jothika, D. Kavitha, A. Gopikrishna, T. Somanathan, K. Girigoswami. Synthesis, Characterization and Applications of GO–TiO2 Nanocomposites in Textile Dye Remediation. Iranian Journal of Science and Technology, Transactions A: Science 46 (2022) 1149-1161. https://doi.org/10.1007/s40995-022-01337-y.
P. Thomas, A.C. Sekhar, R. Upreti, M.M. Mujawar, S.S. Pasha. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnology Reports 8 (2015) 45-55. https://doi.org/10.1016/j.btre.2015.08.003.
S.K. Metkar, A. Girigoswami, D.D. Bondage, U.G. Shinde, K. Girigoswami. The potential of lumbrokinase and serratiopeptidase for the degradation of Aβ 1–42 peptide–an in vitro and in silico approach. International Journal of Neuroscience (2022). https://doi.org/10.1080/00207454.2022.2089137.
K. Liu, P.-c. Liu, R. Liu, X. Wu. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Medical Science Monitor Basic Research 21 (2015) 15-20. https://doi.org/10.12659/MSMBR.893327.
K. Girigoswami, S.H. Ku, J. Ryu, C.B. Park. A synthetic amyloid lawn system for high-throughput analysis of amyloid toxicity and drug screening. Biomaterials 29 (2008) 2813-2819. https://doi.org/10.1016/j.biomaterials.2008.03.022.
K. Girigoswami, M. Viswanathan, R. Murugesan, A. Girigoswami. Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity. Materials Science and Engineering C 56 (2015) 501-510. https://doi.org/10.1016/j.msec.2015.07.017.
R. Ghosh, K. Girigoswami. NADH dehydrogenase subunits are overexpressed in cells exposed repeatedly to H2O2. Mutation Research/Fundamental Molecular Mechanisms of Mutagenesis 638 (2008) 210-215. https://doi.org/10.1016/j.mrfmmm.2007.08.008.
S.M. Peterson, J.L. Freeman. RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. JoVE (Journal of Visualized Experiments) 30 (2009) e1470. https://doi.org/10.3791/1470.
K. Jyoti, M. Baunthiyal, A. Singh. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences 9 (2016) 217-227.
G. Agraharam, A. Girigoswami, K. Girigoswami. Nanoencapsulated myricetin to improve antioxidant activity and bioavailability: a study on zebrafish embryos. Chemistry 4 (2021) 1-17. https://doi.org/10.3390/chemistry4010001.
B. Deepika, A. Gopikrishna, A. Girigoswami, M.N. Banu, K. Girigoswami. Applications of Nanoscaffolds in Tissue Engineering. Current Pharmacology Reports 8 (2022) 171-187. https://doi.org/10.1007/s40495-022-00284-x.
A. Girigoswami, K. Girigoswami. Potential Applications of Nanoparticles in Improving the Outcome of Lung Cancer Treatment. Genes 14 (2023) 1370. https://doi.org/10.3390/genes14071370.
P. Pallavi, K. Harini, S. Crowder, D. Ghosh, P. Gowtham, K. Girigoswami, A. Girigoswami. Rhodamine-Conjugated Anti-Stokes Gold Nanoparticles with Higher ROS Quantum Yield as Theranostic Probe to Arrest Cancer and MDR Bacteria. Applied Biochemistry and Biotechnology 195 (2023) 6979-6993. https://doi.org/10.1007/s12010-023-04475-0.
S.S. Ps, A. Guha, B. Deepika, S. Udayakumar, M. Nag, D. Lahiri, A. Girigoswami, K. Girigoswami. Nanocargos designed with synthetic and natural polymers for ovarian cancer management. Naunyn-Schmiedeberg's Archives of Pharmacology 396 (2023) 407–3415. https://doi.org/10.1007/s00210-023-02608-0.
N. Akhtar, S.K. Metkar, A. Girigoswami, K. Girigoswami. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Materials Science and Engineering C 78 (2017) 960-968. https://doi.org/j.msec.2017.04.118.
S. Nishakavya, A. Girigoswami, A. Gopikrishna, R. Deepa, A. Divya, S. Ajith, K. Girigoswami. Size attenuated copper doped zirconia nanoparticles enhances in vitro antimicrobial properties. Applied Biochemistry and Biotechnology 194 (2022) 3435-3452. https://doi.org/10.1007/s12010-022-03875-y.
S. Lal, R. Verma, A. Chauhan, J. Dhatwalia, I. Guleria, S. Ghotekar, S. Thakur, K. Mansi, R. Kumar, A. Kumari. Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPs from Myrica esculenta fruits extract. Inorganic Chemistry Communications 141 (2022) 109518. https://doi.org/10.1016/j.inoche.2022.109518.
N.R. Jagannathan, Potential of Magnetic Resonance (MR) Methods in Clinical Cancer Research, in Biomedical Translational Research, R.C. Sobti, A. SobtiSpringer, Eds., 2022, p. 339-360. https://doi.org/10.1007/978-981-16-4345-3_21.
P. Sharmiladevi, K. Girigoswami, V. Haribabu, A. Girigoswami. Nano-enabled theranostics for cancer. Materials Advances 2 (2021) 2876-2891. https://doi.org/10.1039/D1MA00069A.
R. Sakthi Devi, A. Girigoswami, M. Siddharth, K. Girigoswami. Applications of gold and silver nanoparticles in theranostics. Applied Biochemistry and Biotechnology 194 (2022) 4187-4219. https://doi.org/10.1007/s12010-022-03963-z.
N. Durán, M. Durán, C.E.d. Souza. Silver and silver chloride nanoparticles and their anti-tick activity: a mini review. Journal of the Brazilian Chemical Society 28 (2017) 927-932. https://doi.org/10.21577/0103-5053.20170045
M. Akter, M.T. Sikder, M.M. Rahman, A.A. Ullah, K.F.B. Hossain, S. Banik, T. Hosokawa, T. Saito, M. Kurasaki. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research 9 (2018) 1-16. https://doi.org/10.1016/j.jare.2017.10.008.
C. Liao, Y. Li, S.C. Tjong. Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Sciences 20 (2019) 449. https://doi.org/10.3390/ijms20020449.
F. Safari, M. Rabieepor, F. Jamalomidi, Z. Baghaeifar, L. Khodaei. Evaluation of Anti-cancer and Pro-apoptotic Activities of Iranian Green Tea Extract Against A549, PC3, and MCF-7 Cancer Cell Lines. International Journal of Basic Science in Medicine 4 (2019) 113-118. https://doi.org/10.15171/ijbsm.2019.21.
S. Mashjoor, M. Alishahi, Z. Tulaby Dezfuly. In vivo Comparative Toxicity of Silver Nanoparticles and Bio-productivity in Zebrafish (Embryo and Adult Stages). Modares Journal of Biotechnology 9 (2018) 465-472. https://doi.org/biot.modares.ac.ir/article-22-15751-en.html.
S. Cambier, M. Røgeberg, A. Georgantzopoulou, T. Serchi, C. Karlsson, S. Verhaegen, T.-G. Iversen, C. Guignard, M. Kruszewski, L. Hoffmann. Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. Science of The Total Environment 610 (2018) 972-982. https://doi.org/10.1016/j.scitotenv.2017.08.115.
G. Tortella, O. Rubilar, N. Durán, M. Diez, M. Martínez, J. Parada, A. Seabra. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. Journal of Hazardous Materials 390 (2020) 121974. https://doi.org/10.1016/j.jhazmat.2019.121974.
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Tamilnadu State Council For Science And Technology
Grant numbers BS-929