Encapsulated polycaprolactone with triazole derivatives and selenium nanoparticles as promising antiproliferative and anticancer agents

Authors

  • Ahmed El-Sayed Abdelhamid Polymers & Pigments Department, National Research Centre, El-Bohouth St., Dokki - 12622, Giza, Egypt https://orcid.org/0000-0002-1421-366X
  • Ahmed El-Sayed Photochemistry Department, National Research Centre, 33 El-Bohouth St., Dokki - 12622, Giza, Egypt https://orcid.org/0000-0003-2555-5259
  • Samira A. Swelam Photochemistry Department, National Research Centre, 33 El-Bohouth St., Dokki - 12622, Giza, Egypt https://orcid.org/0000-0001-6886-6394
  • Abdelmohsen M. Soliman Therapeutic Chemistry Department, National Research Centre, 33 El-Bohouth St., Dokki - 12622, Giza, Egypt https://orcid.org/0000-0001-8816-5309
  • Ahmed M. Khalil Photochemistry Department, National Research Centre, 33 El-Bohouth St., Dokki - 12622, Giza, Egypt https://orcid.org/0000-0002-4252-8175

DOI:

https://doi.org/10.5599/admet.1789

Keywords:

Carbohydrate polymers, metal nanoparticles, breast cancer cell line (MCF7), murine fibroblast normal cell line (BALB/3T3)
Graphical Abstract

Abstract

Background and purpose: Polycaprolactone nanocapsules incorporated with triazole derivatives in the presence and absence of selenium nanoparticles were prepared and evaluated as antiproli­ferative and anticancer agents. Polycaprolactone nanoparticles were prepared using the emulsion technique. Experimental approach: The prepared capsules were characterized using FT-IR, TEM and DLS measurements. The synthesized triazo­lopyrimidine derivative in the presence and absence of selenium nanoparticles encap­sulated in polycaprolactone was tested for its in vitro antiproli­ferative efficiency towards human breast cancer cell line (MCF7) and murine fibroblast normal cell line (BALB/3T3) in comparison to doxorubicin as a standard anticancer drug. Key results: The results indicated that encapsulated polycapro­lactone with selenium nanoparticles (SeNPs) and triazole-SeNPs were the most potent samples against the tested breast cancer cell line (MCF7). On the other hand, all compounds showed weak or moderate activities towards the tested murine fibroblast normal cell line (BALB/3T3). Conclusion: As the safety index (SI) was higher than 1.0, it expanded the way for newly synthesized compounds to express antiproliferative efficacy against tumour cells. Hence, these compounds may be considered promising ones. However, they should be examined through further in-vivo and pharmacokinetic studies.

Downloads

Download data is not yet available.

References

B. Yan, Y. Wang, Y. Ma, J. Zhao, Y. Liu, L. Wang. In vitro and in vivo evaluation of poly (acrylic acid) modified mesoporous silica nanoparticles as pH response carrier for β-elemene self-micro emulsifying. International Journal of Pharmaceutics 572 (2019) 118768. https://doi.org/10.1016/J.IJPHARM.2019.118768.

S. Park, K. Kim, B. Min, S. Hong. Preparation and release characterization of biodegradable poly(ε-caprolactone) microcapsules containing tocopherol. Korean Polymer Society 28 (2004) 103-110. https://www.polymer.or.kr/v2/sub05_05.php?content=search&journalid=4&vol=28&seq=441273 (accessed March 25, 2023).

H.D.Y.Y.-S.B.-Y. Lee. Poly(ε-caprolactone) Microcapsule with Encapsulated Nifedipine Prepared by Magnetic Stirrer. Journal of Biomedical Engineering Research 40 (2019) 7-14. https://doi.org/10.9718/JBER.2019.40.1.7.

P. Braeutigam, Z.L. Wu, A. Stark, B. Ondruschka. Roles of Pumps and Bypass in Chemistry Induced by Hydrodynamic Cavitation. Chemical Engineering & Technology 33 (2010) 341-346. https://doi.org/10.1002/CEAT.200900434.

S. Łukasiewicz, A. Mikołajczyk, E. Błasiak, E. Fic, M. Dziedzicka-Wasylewska. Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines. Pharmaceutics 13 (2021) 191. https://doi.org/10.3390/PHARMACEUTICS13020191.

S. Ünal, O. Doğan, Y. Aktaş. Paclitaxel-loaded polycaprolactone nanoparticles for lung tumors; formulation, comprehensive in vitro characterization and release kinetic studies. Journal of Faculty of Pharmacy of Ankara University 46 (2022) 1009-1029. https://doi.org/10.33483/JFPAU.1161238.

C.J. Lee, H.J. Ha, S.Y. Kim, J.Y. Park, N.K. Jang, J.E. Song, G. Khang. Sustained release formulation and characterization of nifedipine three-layered tablet using various polymers. Polymer (Korea) 39 (2015) 739-745. https://doi.org/10.7317/PK.2015.39.5.739.

Y. Herdiana, N. Wathoni, S. Shamsuddin, M. Muchtaridi. Drug release study of the chitosan-based nanoparticles. Heliyon 8 (2022) e08674. https://doi.org/10.1016/J.HELIYON.2021.E08674.

J. Huang, R.J. Wigent, J.B. Schwartz. Drug-polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. Journal of Pharmaceutical Sciences 97 (2008) 251-262. https://doi.org/10.1002/JPS.21072.

Y. Satoh, L. Catti, M. Akita, M. Yoshizawa. A Redox-Active Heterocyclic Capsule: Radical Generation, Oxygenation, and Guest Uptake/Release. Journal of the American Chemical Society 141 (2019) 12268-12273. https://doi.org/10.1021/JACS.9B03419.

A.E. Abdelhamid, A.A. El-Sayed, S.A. Swelam, A.M. Soliman, A.M. Khalil. Encapsulation of Triazole Derivatives Conjugated with Selenium Nanoparticles onto Nano-Chitosan for Antiproliferative Activity towards Cancer Cells. Egyptian Journal of Chemistry 65 (2022) 1231-1239. https://doi.org/10.21608/EJCHEM.2022.147872.6401.

A.A. El-Sayed, S.M. Abu-Bakr, S.A. Swelam, N.Y. Khaireldin, K.R. Shoueir, A.M. Khalil. Applying Nanotechnology in the Synthesis of Benzimidazole Derivatives: A Pharmacological Approach. Review 12 (2022) 992-1005. https://doi.org/10.33263/BRIAC121.9921005.

J. Světlík, V. Kettmann. The chameleon-like behaviour of 3-amino-1,2,4-triazole in the Biginelli reaction: Unexpected formation of a novel spiroheterocyclic system. Tetrahedron Letters 52 (2011) 1062-1066. https://doi.org/10.1016/j.tetlet.2010.12.051.

E.A. Elhefny, F.A. Elhag, S.A. Swelam, A.A. El Rashedy, A.E. Soliman. Synthesis, characterization, antitumor evaluation and molecular docking of some triazolotriazine derivatives. Journal of Pharma Research (2014) 79-87. www.jprinfo.com (accessed October 9, 2020).

X.M. Chu, C. Wang, W.L. Wang, L.L. Liang, W. Liu, K.K. Gong, K.L. Sun. Triazole derivatives and their antiplasmodial and antimalarial activities. European Journal of Medicinal Chemistry 166 (2019) 206-223. https://doi.org/10.1016/j.ejmech.2019.01.047.

A.A. El-Sayed, E.B. Pedersen, N.Y. Khaireldin. Thermal Stability of Modified i-Motif Oligonucleotides with Naphthalimide Intercalating Nucleic Acids. Helvetica Chimica Acta 99 (2016) 14-19. https://doi.org/10.1002/hlca.201500140.

S. Chaudhary, A. Umar, S.K. Mehta. Surface functionalized selenium nanoparticles for biomedical applications. Journal of Biomedical Nanotechnology 10 (2014) 3004-3042. https://doi.org/10.1166/jbn.2014.1985.

A.E. Abdelhamid, E.H. Ahmed, H.M. Awad, M.M.H. Ayoub. Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosan. Polymer Bulletin (2023). https://doi.org/10.1007/S00289-023-04768-8.

S.A. Wadhwani, U.U. Shedbalkar, R. Singh, B.A. Chopade. Biogenic selenium nanoparticles: current status and future prospects. Applied Microbiology and Biotechnology 100 (2016) 2555-2566. https://doi.org/10.1007/s00253-016-7300-7.

N. Srivastava, M. Mukhopadhyay. Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technology 244 (2013) 26-29. https://doi.org/10.1016/j.powtec.2013.03.050.

S. Ramya, T. Shanmugasundaram, R. Balagurunathan. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and antiviral activities. Journal of Trace Elements in Medicine and Biology 32 (2015) 30-39. https://doi.org/10.1016/j.jtemb.2015.05.005.

M. Hassan, S. Ali, H. Alquhayz, J.Y. Kim, M. Sanaullah. Developing liver cancer drug response prediction system using late fusion of reduced deep features. Journal of King Saud University - Computer and Information Sciences 34 (2022) 8122-8135. https://doi.org/10.1016/J.JKSUCI.2022.07.024.

C.Y. Karakaş, H. Tekarslan Şahin, B. İnan, D. Özçimen, Y. Erginer. In vitro cytotoxic activity of microalgal extracts loaded nano-micro particles produced via electrospraying and microemulsion methods. Biotechnology Progress 35 (2019) e2876. https://doi.org/10.1002/BTPR.2876.

J. Saha, J.H. Kim, C.N. Amaya, C. Witcher, A. Khammanivong, D.M. Korpela, D.R. Brown, J. Taylor, B.A. Bryan, E.B. Dickerson. Propranolol Sensitizes Vascular Sarcoma Cells to Doxorubicin by Altering Lysosomal Drug Sequestration and Drug Efflux. Frontiers in Oncology 10 (2021) 3260. https://doi.org/10.3389/FONC.2020.614288.

S. Łukasiewicz, A. Mikołajczyk, E. Błasiak, E. Fic, M. Dziedzicka-Wasylewska. Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines. Pharmaceutics 2021, Vol. 13, Page 191 13 (2021) 191. https://doi.org/10.3390/PHARMACEUTICS13020191.

P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. Mcmahon, D. Vistica, J.T. Warren, H. Bokesch, S. Kenney, M.R. Boyd. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. JNCI: Journal of the National Cancer Institute 82 (1990) 1107-1112. https://doi.org/10.1093/JNCI/82.13.1107.

R.R. Khattab, S.A. Swelam, A.M. Khalil, A.E. Abdelhamid, A.M. Soliman, A.A. El-Sayed. Novel Sono-synthesized Triazole Derivatives Conjugated with Selenium Nanoparticles for cancer treatment. Egyptian Journal of Chemistry 64 (2021) 4675-4688. https://doi.org/10.21608/EJCHEM.2021.81154.4018.

K.S. and K.K. Manavi Kapur. Green Synthesis of Selenium Nanoparticles from Broccoli, Characterization, Application and 0054oxicity. Advanced Techniques in Biology & Medicine 5 (2017) 2379-1764. https://doi.org/10.4172/2379-1764.1000198.

S.A. Wadhwani, M. Gorain, P. Banerjee, U.U. Shedbalkar, R. Singh, G.C. Kundu, B.A. Chopade. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. International Journal of Nanomedicine 12 (2017) 6841-6855. https://doi.org/10.2147/IJN.S139212.

M.F. Mansour, A.H. Arisha, M. Al-Gamal, R. Yahia, A.A. Elsayed, S. Saad, K.M. El-Bohi. Moringa oleifera leaves extract ameliorates melamine-induced testicular toxicity in rats. Advances in Animal and Veterinary Sciences 8 (2020) 47-54. https://doi.org/10.17582/journal.aavs/2020/8.s1.47.54.

E.G. E. El Gohary, S. M. Farag, A. A. El-Sayed, R. R. Khattab, D. M. Mahmoud. Insecticidal Activity and Biochemical Study of the Clove Oil (Syzygium aromaticum) Nano- Formulation on Culex pipiens L. (Diptera: Culicidae). Egyptian Journal of Aquatic Biology and Fisheries 25 (2021) 227-239. https://doi.org/10.21608/ejabf.2021.137233.

V.R. Ranjitha, V.R. Ravishankar. Extracellular Synthesis of Selenium Nanoparticles from an Actinomycetes Streptomyces griseoruber and Evaluation of its Cytotoxicity on HT-29 Cell Line. Pharmaceutical Nanotechnology 6 (2018) 61-68. https://doi.org/10.2174/2211738505666171113141010.

A.M. Khalil, M.L. Hassan, A.A. Ward. Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohydrate Polymers 157 (2017) 503-511. https://doi.org/10.1016/j.carbpol.2016.10.008.

A.M. Khalil, V. Georgiadou, M. Guerrouache, S. Mahouche-Chergui, C. Dendrinou-Samara, M.M. Chehimi, B. Carbonnier. Gold-decorated polymeric monoliths: In-situ vs ex-situ immobilization strategies and flow through catalytic applications towards nitrophenols reduction. Polymer 77 (2015) 218-226. https://doi.org/10.1016/j.polymer.2015.09.040.

V. Bewick, L. Cheek, J. Ball. Statistics review 7: Correlation and regression. Critical Care 7 (2003) 451-459. https://doi.org/10.1186/CC2401.

Downloads

Published

28-06-2023 — Updated on 28-06-2023

How to Cite

Abdelhamid, A. E.-S., El-Sayed, A., Swelam, S. A., Soliman, A. M., & Khalil, A. M. (2023). Encapsulated polycaprolactone with triazole derivatives and selenium nanoparticles as promising antiproliferative and anticancer agents. ADMET and DMPK, 11(4), 561–572. https://doi.org/10.5599/admet.1789

Issue

Section

Original Scientific Articles