Lipid functionalized silver-coated carbon dot-capped manganese ferrite as drug-free core-shell nanoparticles for multimodal imaging and therapy

Original scientific article

Authors

DOI:

https://doi.org/10.5599/admet.2905

Keywords:

Manganese ferrite nanoparticles, carbon dots, silver nanoparticles, lipid nanoparticles, magnetic nanoparticles, multimodal diagnosis, cancer therapy

Abstract

Background and purpose: Multifunctional nanoparticles (NPs) are gaining significant interest in biomedical research because of their versatility and potential across various applications, especially in cancer imaging and therapy. These composite systems consist of assorted materials, such as metallic elements, metal oxides, polymers, and carbon-based nanostructures, that are combined to form a single platform featuring improved and synergistic properties. Experimental approach: This study aims to design and synthesize a novel class of silver-coated carbon dot-capped manganese ferrite NPs that were functionalized with lipids (L-Ag@MnFe@C) to improve their cytocompatibility and enable cancer therapy with multimodal imaging functionalities. Carbon-capped manganese ferrite NPs (MnFe@C) were synthesized by a one-pot hydrothermal method, followed by the fabrication of nano-silver coated over the surface (Ag@MnFe@C) using a modified Tollens method, and lipid functionalization was done by the rotary evaporation method for the development of low-cost and biodegradable theranostic agents. Key results: The physicochemical characterization reveals that the engineered L-Ag@MnFe@C exhibits a higher stability, with a zeta potential of -50.6 mV, a hydrodynamic diameter of 279.4 nm and a quantum yield of 69.4 %. The engineered NPs exhibit contrast capabilities in longitudinal magnetic resonance imaging, transverse magnetic resonance imaging, fluorescence imaging, and computed tomography imaging. Furthermore, L-Ag@MnFe@C demonstrated excellent anticancer activity on the lung cancer cell line (A549). Conclusion: Based on these studies, it can be concluded that the engineered L-Ag@MnFe@C exhibits multimodal imaging abilities and demonstrates anticancer properties, thereby confirming it as a potential theranostic agent.

Downloads

Download data is not yet available.

References

[1] F.H. Al-Ostoot, S. Salma, S.A. and Khanum. An Overview of Cancer Biology, Pathophysiological Development and It’s Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Investigation 42 (2024) 559-604. https://doi.org/10.1080/07357907.2024.2361295 DOI: https://doi.org/10.1080/07357907.2024.2361295

[2] S. Alam, J. Lee, A. Sahebkar. Curcumin in Cancer Prevention: Insights from Clinical Trials and Strategies to Enhance Bioavailability. Curr Pharm Des 30 (2024) 1838-1851. https://doi.org/10.2174/0113816128303514240517054617 DOI: https://doi.org/10.2174/0113816128303514240517054617

[3] A. Thirumalai, K. Girigoswami, K. Harini, V. Kiran, P. Durgadevi, A. Girigoswami. Natural polymer derivative-based pH-responsive nanoformulations with entrapped diketo-tautomers of 5-fluorouracil for enhanced cancer therapy: Original scientific article. ADMET and DMPK 13 (2025) 2554. https://doi.org/10.5599/admet.2554 DOI: https://doi.org/10.5599/admet.2554

[4] S. Keshavarz Shahbaz, K. Koushki, O. Izadi, P.E. Penson, V.N. Sukhorukov, P. Kesharwani, A. Sahebkar. Advancements in curcumin-loaded PLGA nanoparticle delivery systems: progressive strategies in cancer therapy. Journal of Drug Targeting 32 (2024) 1207-1232. https://doi.org/10.1080/1061186x.2024.2389892 DOI: https://doi.org/10.1080/1061186X.2024.2389892

[5] B. Liu, H. Zhou, L. Tan, K.T.H. Siu, X.-Y. Guan. Exploring treatment options in cancer: tumor treatment strategies. Signal transduction and targeted therapy 9 (2024) 175. https://doi.org/10.1038/s41392-024-01856-7 DOI: https://doi.org/10.1038/s41392-024-01856-7

[6] S. Manivannan, S. Narayan. Studies on polyethylene glycol crosslinked chitosan nanoparticles for co-delivery of docetaxel and 5-fluorouracil with synergistic effect against cancer. Macromolecular Research 32 (2024) 371-392. https://doi.org/10.1007/s13233-023-00234-6 DOI: https://doi.org/10.1007/s13233-023-00234-6

[7] K. Anitha, S. Chenchula, V. Surendran, B. Shvetank, P. Ravula, R. Milan, R. Chikatipalli, P. R. Advancing cancer theranostics through biomimetics: A comprehensive review. Heliyon 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e27692 DOI: https://doi.org/10.1016/j.heliyon.2024.e27692

[8] P. Gowtham, K. Girigoswami, A.D. Prabhu, P. Pallavi, A. Thirumalai, K. Harini, A. Girigoswami. Hydrogels of Alginate Derivative-Encased Nanodots Featuring Carbon-Coated Manganese Ferrite Cores with Gold Shells to Offer Antiangiogenesis with Multimodal Imaging-Based Theranostics. Advanced Therapeutics 7 (2024) 2400054. https://doi.org/10.1002/adtp.202400054 DOI: https://doi.org/10.1002/adtp.202400054

[9] D. Ganapathy, C. Shivalingam, R. Shanmugam, A.K. Sundramoorthy, K. Murthykumar, S. Pitchiah, S. Sekaran, S.K. Ramachandran. Recent Breakthrough of Bismuth-Based Nanostructured Materials for Multimodal Theranostic Applications. Journal of Nanomaterials 2022 (2022) 4944320. https://doi.org/10.1155/2022/4944320 DOI: https://doi.org/10.1155/2022/4944320

[10] T.S. Biju, V.P. Veeraraghavan, A.P. Francis. Theranostic potential of miRNAs in oral cancer: An emerging approach for precision oncology. Oral Science International 22 (2025) e1277. https://doi.org/10.1002/osi2.1277 DOI: https://doi.org/10.1002/osi2.1277

[11] P. Pallavi, K. Girigoswami, K. Harini, P. Gowtham, A. Thirumalai, A. Girigoswami. Theranostic dye entrapped in an optimized blended-polymer matrix for effective photodynamic inactivation of diseased cells. Naunyn-Schmiedeberg's Archives of Pharmacology 398 (2025) 867-880. https://doi.org/10.1007/s00210-024-03321-2 DOI: https://doi.org/10.1007/s00210-024-03321-2

[12] J. Ouyang, A. Xie, J. Zhou, R. Liu, L. Wang, H. Liu, N. Kong, W. Tao. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chemical Society Reviews 51 (2022) 4996-5041. https://doi.org/10.1039/D1CS01148K DOI: https://doi.org/10.1039/D1CS01148K

[13] J.-W. Bai, S.-Q. Qiu, G.-J. Zhang. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduction and Targeted Therapy 8 (2023) 89. https://doi.org/10.1038/s41392-023-01366-y DOI: https://doi.org/10.1038/s41392-023-01366-y

[14] Z. Yu, L. Gao, K. Chen, W. Zhang, Q. Zhang, Q. Li, K. Hu. Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment. Nanoscale Research Letters 16 (2021) 88. https://doi.org/10.1186/s11671-021-03489-z DOI: https://doi.org/10.1186/s11671-021-03489-z

[15] P. Durgadevi, K. Girigoswami, A. Girigoswami. Photophysical Process of Hypocrellin-Based Photodynamic Therapy: An Efficient Antimicrobial Strategy for Overcoming Multidrug Resistance. Physics 7 (2025) 28. https://doi.org/10.3390/physics7030028 DOI: https://doi.org/10.3390/physics7030028

[16] F. Buarki, H. AbuHassan, F. Al Hannan, F.Z. Henari. Green Synthesis of Iron Oxide Nanoparticles Using Hibiscus rosa sinensis Flowers and Their Antibacterial Activity. Journal of Nanotechnology 2022 (2022) 5474645. https://doi.org/10.1155/2022/5474645 DOI: https://doi.org/10.1155/2022/5474645

[17] P. Durgadevi, K. Girigoswami, A. Girigoswami. Biodegradable nanomaterials in boosting seed vigor and germination: seed coating towards sustainability. Discover Applied Sciences 7 (2025) 695. https://doi.org/10.1007/s42452-025-06737-4 DOI: https://doi.org/10.1007/s42452-025-06737-4

[18] P. Pallavi, K. Girigoswami, P. Gowtham, K. Harini, A. Thirumalai, A. Girigoswami. Encapsulating Rhodamine 6G in Oxidized Sodium Alginate Polymeric Hydrogel for Photodynamically Inactivating Cancer Cells. Current Pharmaceutical Design 30 (2024) 2801-2812. https://doi.org/10.2174/0113816128307606240722072006 DOI: https://doi.org/10.2174/0113816128307606240722072006

[19] A. Thirumalai, N. Elboughdiri, K. Harini, K. Girigoswami, A. Girigoswami. Phosphorus-carrying cascade molecules: inner architecture to biomedical applications. Turkish Journal of Chemistry 47 (2023) 667-688. https://doi.org/10.55730/1300-0527.3570 DOI: https://doi.org/10.55730/1300-0527.3570

[20] A. Thirumalai, K. Harini, P. Pallavi, P. Gowtham, K. Girigoswami, A. Girigoswami. Bile salt-mediated surface-engineered bilosome-nanocarriers for delivering therapeutics. Nanomedicine Journal 11 (2024) 1-12. https://doi.org/10.22038/nmj.2023.71268.1763

[21] R. Najjar. Clinical applications, safety profiles, and future developments of contrast agents in modern radiology: A comprehensive review. iRADIOLOGY 2 (2024) 430-468. https://doi.org/10.1002/ird3.95 DOI: https://doi.org/10.1002/ird3.95

[22] A. Banerjee, B. Blasiak, A. Dash, B. Tomanek, F.C.J.M. van Veggel, S. Trudel. High-field magnetic resonance imaging: Challenges, advantages, and opportunities for novel contrast agents. Chemical Physics Reviews 3 (2022) 011304. https://doi.org/10.1063/5.0064517 DOI: https://doi.org/10.1063/5.0064517

[23] A. Butt, H. Bach. Nanomedicine and clinical diagnostics part I: applications in conventional imaging (MRI, X-ray/CT, and ultrasound). Nanomedicine 20 (2025) 167-182. https://doi.org/10.1080/17435889.2024.2439776 DOI: https://doi.org/10.1080/17435889.2024.2439776

[24] Z.-R. Lu, V. Laney, Y. Li. Targeted Contrast Agents for Magnetic Resonance Molecular Imaging of Cancer. Accounts of Chemical Research 55 (2022) 2833-2847. https://doi.org/10.1021/acs.accounts.2c00346 DOI: https://doi.org/10.1021/acs.accounts.2c00346

[25] D. Foster, J. Larsen. Polymeric Metal Contrast Agents for T1-Weighted Magnetic Resonance Imaging of the Brain. ACS Biomaterials Science & Engineering 9 (2023) 1224-1242. https://doi.org/10.1021/acsbiomaterials.2c01386 DOI: https://doi.org/10.1021/acsbiomaterials.2c01386

[26] R. Dubey, N. Sinha, N.R. Jagannathan. Potential of in vitro nuclear magnetic resonance of biofluids and tissues in clinical research. NMR in Biomedicine 36 (2023) e4686. https://doi.org/10.1002/nbm.4686 DOI: https://doi.org/10.1002/nbm.4686

[27] D.K. Dwivedi, N.R. Jagannathan. Emerging MR methods for improved diagnosis of prostate cancer by multiparametric MRI. Magnetic Resonance Materials in Physics, Biology and Medicine 35 (2022) 587-608. https://doi.org/10.1007/s10334-022-01031-5 DOI: https://doi.org/10.1007/s10334-022-01031-5

[28] M. Jeon, M.V. Halbert, Z.R. Stephen, M. Zhang. Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Advanced Materials 33 (2021) 1906539. https://doi.org/10.1002/adma.201906539 DOI: https://doi.org/10.1002/adma.201906539

[29] A. Julius, R.R. Renuka, S. Malakondaiah, S. Ramalingam, M.K. Dharmalingam Jothinathan, G.P. Srinivasan, R. Murugan. Radiolabeled nanoparticles in multimodal nuclear imaging, diagnostics and therapy. Journal of Radioanalytical and Nuclear Chemistry 343 (2025) 403-4418. https://doi.org/10.1007/s10967-025-10233-9 DOI: https://doi.org/10.1007/s10967-025-10233-9

[30] V. Haribabu, P. Sharmiladevi, N. Akhtar, A.S. Farook, K. Girigoswami, A. Girigoswami. Label Free Ultrasmall Fluoromagnetic Ferrite-clusters for Targeted Cancer Imaging and Drug Delivery. Current Drug Delivery 16 (2019) 233-241. https://doi.org/10.2174/1567201816666181119112410 DOI: https://doi.org/10.2174/1567201816666181119112410

[31] H. Saeidi, M. Mozaffari, S. Ilbey, S. Dutz, D. Zahn, G. Azimi, M. Bock. Effect of Europium Substitution on the Structural, Magnetic and Relaxivity Properties of Mn-Zn Ferrite Nanoparticles: A Dual-Mode MRI Contrast-Agent Candidate. Nanomaterials 13 (2023) 331. https://doi.org/10.3390/nano13020331 DOI: https://doi.org/10.3390/nano13020331

[32] D.S. Harischandra, S. Ghaisas, G. Zenitsky, H. Jin, A. Kanthasamy, V. Anantharam, A.G. Kanthasamy. Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Frontiers in Neuroscience Volume 13 - 2019 (2019). https://doi.org/10.3389/fnins.2019.00654 DOI: https://doi.org/10.3389/fnins.2019.00654

[33] S. El Mousli, Y. Dorant, E. Bertuit, E. Secret, J.-M. Siaugue. Silica-coated magnetic nanorods with zwitterionic surface functionalization to overcome non-specific protein adsorption. Journal of Magnetism and Magnetic Materials 589 (2024) 171571. https://doi.org/10.1016/j.jmmm.2023.171571 DOI: https://doi.org/10.1016/j.jmmm.2023.171571

[34] X. Wang, T. Yang, Q. Li. Micro- and nanorobots from magnetic particles: Fabrication, control, and applications. Responsive Materials 2 (2024) e20240027. https://doi.org/10.1002/rpm.20240027 DOI: https://doi.org/10.1002/rpm2.69

[35] F. Momenbeik, A. Khatam. Application of Iron Oxide Magnetic Nanoparticles Modified by Superhydrophobic Cellulose as a Sorbent for Solid-Phase Extraction of Fat-Soluble Vitamins. Analytical Science Advances 6 (2025) e70015. https://doi.org/10.1002/ansa.70015 DOI: https://doi.org/10.1002/ansa.70015

[36] M.T.H. Siddiqui, S. Nizamuddin, H.A. Baloch, N.M. Mubarak, M. Al-Ali, S.A. Mazari, A.W. Bhutto, R. Abro, M. Srinivasan, G. Griffin. Fabrication of advance magnetic carbon nano-materials and their potential applications. Journal of environmental chemical engineering 7 (2019) 102812. https://doi.org/10.1016/j.jece.2018.102812 DOI: https://doi.org/10.1016/j.jece.2018.102812

[37] A. Thirumalai, P. Sharmiladevi, K. Girigoswami, A.D. Prabhu, A. Girigoswami. Tuneable carbon dots coated iron oxide nanoparticles as superior T1 contrast agent for multimodal imaging. ADMET and DMPK 13 (2025) 2790. https://doi.org/10.5599/admet.2790 DOI: https://doi.org/10.5599/admet.2790

[38] V. Kiran, K. Harini, A. Thirumalai, K. Girigoswami, A. Girigoswami. Nanostructured Carbon Dots as Ratiometric Fluorescent Rulers for Heavy Metal Detection. International Journal of Nano Dimension 15 (2024) 1-31. https://doi.org/10.57647/j.ijnd.2024.1504.26

[39] N.A. Pechnikova, K. Domvri, K. Porpodis, M.S. Istomina, A.V. Iaremenko, A.V. Yaremenko. Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects. Aggregate 6 (2025) e707. https://doi.org/10.1002/agt2.707 DOI: https://doi.org/10.1002/agt2.70028

[40] P. Sharmiladevi, N. Akhtar, V. Haribabu, K. Girigoswami, S. Chattopadhyay, A. Girigoswami. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Applied Bio Materials 2 (2019) 1634-1642. https://doi.org/10.1021/acsabm.9b00039 DOI: https://doi.org/10.1021/acsabm.9b00039

[41] G. Muscas, F. Congiu, G. Concas, C. Cannas, V. Mameli, N. Yaacoub, R.S. Hassan, D. Fiorani, S. Slimani, D. Peddis. The Boundary Between Volume and Surface-Driven Magnetic Properties in Spinel Iron Oxide Nanoparticles. Nanoscale Research Letters 17 (2022) 98. https://doi.org/10.1186/s11671-022-03737-w DOI: https://doi.org/10.1186/s11671-022-03737-w

[42] G.R. Dillip, A.N. Banerjee, V.C. Anitha, B. Deva Prasad Raju, S.W. Joo, B.K. Min. Oxygen Vacancy-Induced Structural, Optical, and Enhanced Supercapacitive Performance of Zinc Oxide Anchored Graphitic Carbon Nanofiber Hybrid Electrodes. ACS Applied Materials & Interfaces 8 (2016) 5025-5039. https://doi.org/10.1021/acsami.5b12322 DOI: https://doi.org/10.1021/acsami.5b12322

[43] Y. Zhang, J. Wen, Z. Wu, Z. Qin, H. Ji, X. Liu, W. Hu. Room-temperature negative magnetoresistance of FeCo-diamond like carbon nanocomposite film with high anticorrosion and antibiosis. Carbon 235 (2025) 120090. https://doi.org/10.1016/j.carbon.2025.120090 DOI: https://doi.org/10.1016/j.carbon.2025.120090

[44] A. Sati, T.N. Ranade, S.N. Mali, H.K. Ahmad Yasin, A. Pratap. Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity─A 2024 Update. ACS Omega 10 (2025) 7549-7582. https://doi.org/10.1021/acsomega.4c11045 DOI: https://doi.org/10.1021/acsomega.4c11045

[45] F. Lasmi, H. Hamitouche, H. Laribi-Habchi, Y. Benguerba, N. Chafai. Silver Nanoparticles (AgNPs), Methods of Synthesis, Characterization, and Their Applicatio. Plasmonics (2025). https://doi.org/10.1007/s11468-025-02894-9 DOI: https://doi.org/10.1007/s11468-025-02894-9

[46] L. Prabakaran, W.V. Sathyaraj, B.V. Yesudhason, G.K. Subbaraj, R. Atchudan. Green Synthesis of Multifunctional Silver Nanoparticles Using Plectranthus amboinicus for Sensitive Detection of Triethylamine, with Potential In Vitro Antibacterial and Anticancer Activities. Chemosensors 11 (2023) 373. https://doi.org/10.3390/chemosensors11070373 DOI: https://doi.org/10.3390/chemosensors11070373

[47] J. Zhang, W. Liu, P. Zhang, Y. Song, Z. Ye, H. Fu, S. Yang, Q. Qin, Z. Guo, J. Zhang. Polymers for Improved Delivery of Iodinated Contrast Agents. ACS Biomaterials Science & Engineering 8 (2022) 32-53. https://doi.org/10.1021/acsbiomaterials.1c01082 DOI: https://doi.org/10.1021/acsbiomaterials.1c01082

[48] A. Gupta, A. Sood, E. Fuhrer, K. Djanashvili, G. Agrawal. Polysaccharide-Based Theranostic Systems for Combined Imaging and Cancer Therapy: Recent Advances and Challenges. ACS Biomaterials Science & Engineering 8 (2022) 2281-2306. https://doi.org/10.1021/acsbiomaterials.1c01631 DOI: https://doi.org/10.1021/acsbiomaterials.1c01631

[49] T.C. Owens, N. Anton, M.F. Attia. CT and X-ray contrast agents: Current clinical challenges and the future of contrast. Acta Biomaterialia 171 (2023) 19-36. https://doi.org/10.1016/j.actbio.2023.09.027 DOI: https://doi.org/10.1016/j.actbio.2023.09.027

[50] H. Yang, J. Zhao, D. Li, Y. Cao, F. Li, J. Ma, P. Liu. Application of silver nanotriangles as a novel contrast agent in tumor computed tomography imaging. Nanotechnology 32 (2021) 495705. https://doi.org/10.1088/1361-6528/ac21ef DOI: https://doi.org/10.1088/1361-6528/ac21ef

[51] A. Alhasan, H.A. Tajuddin, S.F.A. Sani, T.H. Ali, S. Hisham, M.H. Mokti, N.M. Ung, M.P. Ng, K.S. Sim. Iohexol functionalized Si-Ag:Mn3O4 hybrid nanoparticles based contrast agent for computed tomography imaging. Materials Today Communications 33 (2022) 104377. https://doi.org/10.1016/j.mtcomm.2022.104377 DOI: https://doi.org/10.1016/j.mtcomm.2022.104377

[52] L.M. Nieves, Y.C. Dong, D.N. Rosario-Berríos, K. Mossburg, J.C. Hsu, G.M. Cramer, T.M. Busch, A.D.A. Maidment, D.P. Cormode. Renally Excretable Silver Telluride Nanoparticles as Contrast Agents for X-ray Imaging. ACS Applied Materials & Interfaces 14 (2022) 34354-34364. https://doi.org/10.1021/acsami.2c06190 DOI: https://doi.org/10.1021/acsami.2c06190

[53] D. Jessy Mercy, A. Thirumalai, S. Udayakumar, B. Deepika, G. Janani, A. Girigoswami, K. Girigoswami. Enhancing Wound Healing with Nanohydrogel-Entrapped Plant Extracts and Nanosilver: An In Vitro Investigation. Molecules 29 (2024) 5004. https://doi.org/10.3390/molecules29215004 DOI: https://doi.org/10.3390/molecules29215004

[54] M. Harun-Ur-Rashid, T. Foyez, S.B.N. Krishna, S. Poda, A.B. Imran. Recent advances of silver nanoparticle-based polymer nanocomposites for biomedical applications. RSC Advances 15 (2025) 8480-8505. https://doi.org/10.1039/D4RA08220F DOI: https://doi.org/10.1039/D4RA08220F

[55] A. Luchini, G. Vitiello. Understanding the Nano-bio Interfaces: Lipid-Coatings for Inorganic Nanoparticles as Promising Strategy for Biomedical Applications. Frontiers in Chemistry 7 (2019) 343. https://doi.org/10.3389/fchem.2019.00343 DOI: https://doi.org/10.3389/fchem.2019.00343

[56] K. Harini, K. Girigoswami, M. Vajagathali, D. Bose, A. Thirumalai, V. Kiran, P. Durgadevi, A. Girigoswami. Enhanced behavioral impact of optimized bupropion-encapsulated bilosomes over traditional niosomes treating depression. Naunyn-Schmiedeberg's Archives of Pharmacology 398 (2025) 4373-4392. https://doi.org/10.1007/s00210-024-03549-y DOI: https://doi.org/10.1007/s00210-024-03549-y

[57] S. Talegaonkar, A. Bhattacharyya. Potential of Lipid Nanoparticles (SLNs and NLCs) in Enhancing Oral Bioavailability of Drugs with Poor Intestinal Permeability. AAPS PharmSciTech 20 (2019) 121. https://doi.org/10.1208/s12249-019-1337-8 DOI: https://doi.org/10.1208/s12249-019-1337-8

[58] K. Harini, S.Y. Alomar, M. Vajagathali, S. Manoharadas, A. Thirumalai, K. Girigoswami, A. Girigoswami. Niosomal Bupropion: Exploring Therapeutic Frontiers through Behavioral Profiling. Pharmaceuticals 17 (2024) 366. https://doi.org/10.3390/ph17030366 DOI: https://doi.org/10.3390/ph17030366

[59] A. Thirumalai, K. Girigoswami, A.D. Prabhu, P. Durgadevi, V. Kiran, A. Girigoswami. 8-Anilino-1-naphthalenesulfonate-Conjugated Carbon-Coated Ferrite Nanodots for Fluoromagnetic Imaging, Smart Drug Delivery, and Biomolecular Sensing. Pharmaceutics 16 (2024) 1378. https://doi.org/10.3390/pharmaceutics16111378 DOI: https://doi.org/10.3390/pharmaceutics16111378

[60] A. Dutta, R.R. Dutta, S. Gogoi, Chapter 6 - Optical properties of carbon dots and their applications, in Carbon Dots in Agricultural Systems, R. Khan, S. Murali, S. Gogoi, Eds., Academic Press, 2022, pp. 135-153. https://doi.org/10.1016/B978-0-323-90260-1.00003-6 DOI: https://doi.org/10.1016/B978-0-323-90260-1.00003-6

[61] X. Huang, W. Ye, J. Zhuang, C. Hu, H. Dong, B. Lei, Y. Liu. π-Conjugated Structure Enhances the UV Absorption Performance of Carbon Dots and Application in the Design of Light-Colored Sunglasses. ACS Sustainable Chemistry & Engineering 12 (2024) 10399-10410. https://doi.org/10.1021/acssuschemeng.4c01739 DOI: https://doi.org/10.1021/acssuschemeng.4c01739

[62] K. Khurana, N. Jaggi. Localized Surface Plasmonic Properties of Au and Ag Nanoparticles for Sensors: a Review. Plasmonics 16 (2021) 981-999. https://doi.org/10.1007/s11468-021-01381-1 DOI: https://doi.org/10.1007/s11468-021-01381-1

[63] Y. Fu, J. Zhang, J.R. Lakowicz. Plasmonic Enhancement of Single-Molecule Fluorescence Near a Silver Nanoparticle. Journal of Fluorescence 17 (2007) 811-816. https://doi.org/10.1007/s10895-007-0259-0 DOI: https://doi.org/10.1007/s10895-007-0259-0

[64] V. Can, B. Onat, E.S. Cirit, F. Sahin, Z.C. Canbek Ozdil. Metal-Enhanced Fluorescent Carbon Quantum Dots via One-Pot Solid State Synthesis for Cell Imaging. ACS Applied Bio Materials 6 (2023) 1798-1805. https://doi.org/10.1021/acsabm.3c00040 DOI: https://doi.org/10.1021/acsabm.3c00040

[65] T. Jaiganesh, J. Daisy Vimala Rani, A. Girigoswami. Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth. Spectrochimica Acta A 92 (2012) 29-32. https://doi.org/10.1016/j.saa.2012.02.044 DOI: https://doi.org/10.1016/j.saa.2012.02.044

Downloads

Published

26-08-2025

Issue

Section

Pharmaceutical and biomedical analysis

How to Cite

Lipid functionalized silver-coated carbon dot-capped manganese ferrite as drug-free core-shell nanoparticles for multimodal imaging and therapy: Original scientific article. (2025). ADMET and DMPK, 2905. https://doi.org/10.5599/admet.2905

Similar Articles

1-10 of 174

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)