A new method for measuring dopamine in the presence of uric acid employing a carbon paste electrode modified with the UiO-66 metal organic framework-graphene oxide nanocomposite
Original scientific article
DOI:
https://doi.org/10.5599/admet.2593Keywords:
Voltammetry, chemically modified electrodes, real sample analysis, electrochemical sensorAbstract
Background and purpose: Dopamine has an impact on the cardiovascular, endocrine, renal, and central neurological systems. Electrochemical techniques are becoming more and more popular among researchers as a way to assess dopamine and uric acid levels. Experimental approach: Using electrochemical techniques, a new Universitet i Oslo MOF (UiO-66)-graphene oxide nanocomposite-modified carbon paste electrode was created to investigate the electrooxidation of uric acid and dopamine as well as their combinations. At the redesigned electrode, uric acid and dopamine were detected concurrently in a very sensitive way using differential pulse voltammetry (DPV). Key results: Dopamine DPV peak currents increase in a linear fashion at doses between 0.05 and 600.0 µM. Conclusion: Uric acid and dopamine levels in urine and dopamine injection samples may be determined with the help of the proposed sensor, which is reasonably priced and performs well.
Downloads
References
V.K. Yeragani, M. Tancer, P, Chokka, G.B. Baker, A. Carlsson. The story of dopamine. Indian Journal of Psychiatry 52 (2010) 87-88. https://doi.org/10.4103/0019-5545.58907
S.C. Sharma, R. Nadar, J. Deepak, B.R. Krushna, H. Nagabhushana, A. George, J. Inbanathan, M. Panda, R. Sudramani, D.G. Anand. Evaluation of Tb3+-doped spinel magnesium aluminate as a dual-function material for dopamine sensing using glassy carbon electrode and forensic applications. Inorganic Chemistry Communications 170 (2024) 113286. https://doi.org/10.1016/j.inoche.2024.113286
H. Tabei, M. Takahashi, S. Hoshino, O. Niwa, T. Horiuchi. Subfemtomole detection of catecholamine with interdigitated array carbon microelectrodes in HPLC. Analytical Chemistry 66 (1994) 3500-3502. https://doi.org/10.1021/ac00092a031
R. Cui, Y.P. Gu, L. Bao, J.Y. Zhao, B.P. Qi, Z.L. Zhang, Z.X. Xie, D.W. Pang. Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine. Analytical Chemistry 84 (2012) 8932-8935. https://doi.org/10.1021/ac301835f
J. Zhu, W. Wang, G. Chen, T. Gao, Z. Gao, L. Peng, L. Wang, W. Cai. A high-performance wearable microneedle sensor based on a carboxylated carbon nanotube-carbon nanotube composite electrode for the simultaneous detection of uric acid and dopamine. Microchemical Journal 206 (2024) 111607. https://doi.org/10.1016/j.microc.2024.111607
R.L.P. Penha, A.P. Maciel, W.B. Bezerra, F.S. Damos, R.C.S. Luz .Exploiting a carbon black paste electrode modified with palladium nanoparticles entrapped in aluminum hydroxide matrix for selective detection of 2(3)-t-butyl-4-hydroxyanisole antioxidant in biodiesel samples. Journal of Electroanalytical Chemistry 973 (2024) 118683. https://doi.org/10.1016/j.jelechem.2024.118683
M. Mekersi, M. Ferkhi, A. Khaled, N. Maouche, M. Foudia, E. Kuyumcu Savan. Electrochemical bio-monitoring of the analgesic drug paracetamol, the antipsychotic sulpiride, and the antibiotic bromhexine hydrochloride using modified carbon paste electrode based on Ca0.7La0.3Fe0.3Ni0.7O3 nano-sized particles and black carbon. Surfaces and Interfaces 53(2024) 104941. https://doi.org/10.1016/j.surfin.2024.104941
M.A. Ramezani, M. Najafi, M.H. Karimi-Harandi. Highly sensitive determination of trace arsenic(III) onto carbon paste electrode modified with graphitic carbon nitride decorated Fe-MOF. Food Chemistry 458 (2024) 140296. https://doi.org/10.1016/j.foodchem.2024.140296
S. Mutić, J. Anojčić, M. Vraneš, J. Panić, S. Papović. Voltammetric determination of organic UV filters by carbon paste electrodes modified with pyridinium-based ionic liquids. Talanta 266 (2024) 125103. https://doi.org/10.1016/j.talanta.2023.125103
H. Karimi-Maleh, R. Darabi, M. ShabaniNooshabadi, M. Baghayeri, F. Karimi, J. Rouhi, M. Alizadeh, O. Karaman, Y. Vasseghian, C. Karaman. Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food and Chemical Toxicology 162 (2022) 112907. https://doi.org/10.1016/j.fct.2022.112907
D. Tesnim, A.M. Díez, H. Ben Amor, M.A. Sanromán, M. Pazos. Synthesis and characterization of eco-friendly cathodic electrodes incorporating nano Zero-Valent iron (NZVI) for the electro-fenton treatment of pharmaceutical waste water. Chemical Engineering Journal 502 (2024) 158099. https://doi.org/10.1016/j.cej.2024.158099
Z. Shang, M. Zhang, J. Qu, S. Bai, X. Wang, B. Zhang, J. Wang, F. Pahlevani, P. Feng. (Rapid fabrication of morphology-controlled nano-flower Co3O4(OV) from CoAl intermetallic via thermal explosion combined with dealloying for self-supported supercapacitor electrodes. Journal of Alloys and Compounds 1008 (2024) 176849. https://doi.org/10.1016/j.jallcom.2024.176849
V.M. VolantiZaffora, L. Iannucci, S. Grassini, E. Inico, C.G. Saetta Di Liberto, M. Santamaria. Design of Ni-coordinated MOF on stainless steel via electrodeposition as efficient and stable oxygen evolution electrode for alkaline water electrolysis. Electrochimica Acta 511 (2025) 145416. https://doi.org/10.1016/j.electacta.2024.145416
Y. Ding, F. Wei, C. Dong, J. Li, C. Zhang, X. Han. UiO-66 based electrochemical sensor for simultaneous detection of Cd (II) and Pb (II). Inorganic Chemistry Communications 131 (2021) 108785. https://doi.org/10.1016/j.inoche.2021.108785
M. Manuel, S. Kanchi. Construction of a waste-derived graphite electrode integrated IL/Ni-MOF flowers/Co3O4 NDs for specific enrichment and signal amplification to detect aspartame. Colloids and Surfaces A: Physicochemical and Engineering Aspects 705 (2025) 135648. https://doi.org/10.1016/j.colsurfa.2024.135648
B. Tao, X. Feng, F.Miao. Nickel foam supported CuO/Co3O4/r-GO is used as electrode material for non-enzymatic glucose sensors and high performance supercapacitors. Journal of Energy Storage 104 (2024) 114603. https://doi.org/10.1016/j.est.2024.114603
C. Meng, D.V. Snizhko, Y.T. Zholudov, W. Zhang, Y. Guan, Y. Tian, G. Xu. Wireless single-electrode electrochemiluminescence device based on wireless reverse charging or on-the-go USB transmission for multiplex analysis. Chemical Communications 60 (2024) 13546-13549. https://doi.org/10.1039/D4CC04873C
[18] R.M. Obodo, H.E. Nsude, M.O. Duru, S. Ghulam Sarwar, S. Afzal, C. Ononogbo, J.N. Anosike, V.C. Eze, I. Ahmad, M. Maaza. Probing the performance of Co-precipitated Co3(PO4)2@W3(PO4)4/GO electrodes for supercapacitor application. Materials Chemistry and Physics 328 (2024) 12990.
W. Xu, M. Dong, L. Di, A. Zhang. A facile method for preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation. Nanomaterials 9 (2019) 1432. https://doi.org/10.3390/nano9101432
N. Erfaninia, R. Tayebee, M.M. Dusek, M. Amini. Ethylene diamine grafted nanoporous UiO‐66 as an efficient basic catalyst in the multi‐component synthesis of 2‐aminithiophenes. Applied Organometallic Chemistry 32 (2018) e4307. https://doi.org/10.1002/aoc.4307
Y. Wu, J. Han, P. Xue, R. Xu, Y. Kang. Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 7 (2015) 1753-1759. https://doi.org/10.1039/C4NR05447D
A.J. Bard, L.R. Faulkner. Electrochemical Methods Fundamentals and Applications. John Wiley & Sons, New York, 2000. ISBN: 978-0-471-04372-0
M. Mazloum‐Ardakani, M. Abolhasani, B.F. Mirjalili, M.A. Sheikh‐Mohseni, A. Dehghani‐Firouzabadi, A. Khoshroo. Electrocatalysis of dopamine in the presence of uric acid and folic acid on modified carbon nanotube paste electrode. Chinese Journal of Catalysis 35 (2014) 201-209. https://doi.org/10.1016/S1872‐2067(12)60734‐7
F. Gao, X. Cai, W. Xia, C. Gao, S. Liu, F. Gao, Q. Wang. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode, Sensors and Actuators B 186 (2013) 380-387. http://dx.doi.org/10.1016/j.snb.2013.06.020
Published
Issue
Section
License
Copyright (c) 2025 Azhar Hameed Gatea , Aseer Shakir Ajel , Raed Muslim Muhibes

This work is licensed under a Creative Commons Attribution 4.0 International License.