Determination of methotrexate using carbon paste electrode modified with ionic liquid/Ni-Co layered double hydroxide nanosheets as a voltammetric sensor

Authors

  • Peyman Mohammadzadeh Jahani School of Medicine, Bam University of Medical Sciences, Bam, Iran https://orcid.org/0000-0001-6483-8986
  • Fariba Garkani Nejad Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran https://orcid.org/0000-0002-3919-950X
  • Reza Zaimbashi Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran https://orcid.org/0000-0003-2842-6380
  • Mohammad Reza Aflatoonian Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran https://orcid.org/0009-0009-8225-4357
  • Somayeh Tajik Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran https://orcid.org/0000-0002-3919-950X
  • Hadi Beitollahi Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran https://orcid.org/0000-0002-0669-5216

DOI:

https://doi.org/10.5599/admet.2460

Keywords:

Electrochemical sensor, real sample analysis, cyclic voltammetry, differential pulse voltammetry
Graphical Abstract

Abstract

Background and purpose: Methotrexate (MTX) is a widely used anti-cancer drug, but its overuse can lead to significant side effects. Therefore, it is very vital to design simple and sensitive analytical methods for its determi­na­tion. Experimental approach: In this work, an electrochemical sensor was prepared based on an ionic liquid (IL)/Ni-Co layered double hydroxide nanosheets (Ni-Co-LDH)-modified carbon paste electrode IL/Ni-Co-LDH/CPE. Cyclic voltammetry, differential pulse voltammetry, and chronoamperometry methods were applied to evaluate the performance of the designed sensor for MTX determination. Key results: The IL/Ni-Co-LDH/CPE sensor exhibits a linear relationship between the peak current of the differential pulse voltammetry and MTX concentrations in the linear dynamic range of 0.02 to 140.0 µM, with a detection limit of 0.006 µM. The IL/Ni-Co-LDH/CPE sensor exhibited relative standard deviation values between 1.7 to 3.7 % for recovery tests on real samples, indicating the precision of the method. Conclusion: The designed sensor with cost-effective and good performance could be valuable for therapeutic drug monitoring and clinical diagnostics.

Downloads

Download data is not yet available.

References

P. Tarlekar, S. Chatterjee. Dendritic platinum nanoparticles decorated electrochemical sensor for immensely sensitive determination of antineoplastic drug methotrexate. Diamond and Related Materials 148 (2024) 111417. https://doi.org/10.1016/j.diamond.2024.111417

S. Akhter, M. Shalauddin, S.R. Ahmed, V.S. Lee, F. Ibrahim, S. Srinivasan, A.R. Rajabzadeh, W.J. Basirun. Bio-synthesized copper nanoparticle anchored ultrathin petal-shaped black phosphorous nanosheets and 3D graphene decorated nanocomposite for electrochemical sensing of methotrexate and paracetamol in diverse matrices. Electrochimica Acta 497 (2024) 144554. https://doi.org/10.1016/j.electacta.2024.144554

K.O. Adeniyi, B. Osmanaj, G. Manavalan, J.P. Mikkola, A. Berisha, S. Tesfalidet. Reagentless impedimetric immunosensor for monitoring of methotrexate in human blood serum using multiwalled carbon nanotube@ polypyrrole/polytyramine film electrode. Talanta 268 (2024) 125316. https://doi.org/10.1016/j.talanta.2023.125316

C.S. Sastry, J.S. Lingeswara Rao. Spectrophotometric methods for the determination of methotrexate in pharmaceutical formulations. Analytical Letters 29(10) (1996) 1763-1778. https://doi.org/10.1080/00032719608001522

X. Liu, J. Liu, Y. Huang, R. Zhao, G. Liu, Y. Chen. Determination of methotrexate in human serum by high-performance liquid chromatography combined with pseudo template molecularly imprinted polymer. Journal of Chromatography A 1216(44) (2009) 7533-7538. https://doi.org/10.1016/j.chroma.2009.06.018

Z. Szakács, B. Noszál. Determination of dissociation constants of folic acid, methotrexate, and other photolabile pteridines by pressure‐assisted capillary electrophoresis. Electrophoresis 27(17) (2006) 3399-3409. https://doi.org/10.1002/elps.200600128

Z. Song, Y. Wang, Y. Dong, K. Xu, H. Long, C. Deng, Y. Yin, S.A. Eremin, M. Meng, R. Xi. A validated chemiluminescence immunoassay for methotrexate (MTX) and its application in a pharmacokinetic study. Analytical Methods 8(1) (2016) 162-170. https://doi.org/10.1039/C5AY02270C

M.A. Al-Ghobashy, S.A. Hassan, D.H. Abdelaziz, N.M. Elhosseiny, N.A. Sabry, A.S. Attia, M.H. El-Sayed. Development and validation of LC-MS/MS assay for the simultaneous determination of methotrexate, 6-mercaptopurine and its active metabolite 6-thioguanine in plasma of children with acute lymphoblastic leukemia: Correlation with genetic polymorphism. Journal of Chromatography B 1038 (2016) 88-94. https://doi.org/10.1016/j.jchromb.2016.10.035

B. Mutharani, P. Ranganathan, S.M. Chen, P. Sireesha. Ultrasound-induced radicals initiated the formation of inorganic-organic Pr2O3/polystyrene hybrid composite for electro-oxidative determination of chemotherapeutic drug methotrexate. Ultrasonics sonochemistry 56 (2019) 410-421. https://doi.org/10.1016/j.ultsonch.2019.04.029

Y. Wei, L. Luo, Y. Ding, X. Si, Y. Ning. Highly sensitive determination of methotrexate at poly(l-lysine) modified electrode in the presence of sodium dodecyl benzene sulfonate. Bioelectrochemistry 98 (2014) 70-75. https://doi.org/10.1016/j.bioelechem.2014.03.005

Z. Deng, H. Li, Q. Tian, Y. Zhou, X. Yang, Y. Yu, B. Jiang, Y. Xu, T. Zhou. Electrochemical detection of methotrexate in serum sample based on the modified acetylene black sensor. Microchemical Journal 157 (2020) 105058. https://doi.org/10.1016/j.microc.2020.105058

A. Yamuna, T.W. Chen, S.M. Chen, M.C. Yu, J. Yu. One-pot synthesis of antimony oxide and bismuth oxide nanocomposites for the selective electrochemical determination of the anti-cancer drug methotrexate in biomedical samples. Ceramics International 48(2) (2022) 2369-2376. https://doi.org/10.1016/j.ceramint.2021.10.017

N. Hareesha, J.G. Manjunatha, Z.A. Alothman, M. Sillanpää. Simple and affordable graphene nano-platelets and carbon nanocomposite surface decorated with cetrimonium bromide as a highly responsive electrochemical sensor for rutin detection. Journal of Electroanalytical Chemistry 917 (2022) 116388. https://doi.org/10.1016/j.jelechem.2022.116388

S. Tajik, H. Beitollahi, S. Shahsavari, F.G. Nejad. Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode. Chemosphere 291 (2022) 132736. https://doi.org/10.1016/j.chemosphere.2021.132736

G. Tesfaye, M. Tessema, N. Negash. Electrochemical determination of vitamin B6 in pharmaceutical and energy drink samples. Journal of Electrochemical Science and Engineering 13(2) (2023) 297-319. https://doi.org/10.5599/jese.1674

Y. Gupta, A.S. Ghrera. Development of conducting paper-based electrochemical biosensor for procalcitonin detection. ADMET and DMPK 11(2) (2023) 263-275. https://doi.org/10.5599/admet.1575

C. Raril, J.G. Manjunatha, D.K. Ravishankar, S. Fattepur, G. Siddaraju, L. Nanjundaswamy. Validated electrochemical method for simultaneous resolution of tyrosine, uric acid, and ascorbic acid at polymer modified nano-composite paste electrode. Surface Engineering and Applied Electrochemistry 56 (2020) 415-426. ,https://doi.org/10.3103/S1068375520040134.

S. Borji, H. Beitollahi, F.G. Nejad. Evaluating the Electrochemical Detection of Methyldopa in the Presence of Hydrochlorothiazide using a modified Carbon Paste Electrode and Voltammetric Analysis. Topics in Catalysis 67(9) (2024) 773-784. https://doi.org/10.1007/s11244-023-01855-y

J. Mohanraj, D. Durgalakshmi, R.A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. Journal of Colloid and Interface Science 566 (2020) 463-472. https://doi.org/10.1016/j.jcis.2020.01.089

J.G. Manjunatha, C. Raril, N. Hareesha, M.M. Charithra, P.A. Pushpanjali, G. Tigari, D.K. Ravishankar, S.C. Mallappaji, J. Gowda. Electrochemical fabrication of poly (niacin) modified graphite paste electrode and its application for the detection of riboflavin. The Open Chemical Engineering Journal 31 (2020) 1. https://doi.org/10.2174/1874123102014010090

S. Tajik, P. Shams, H. Beitollahi, F. Garkani Nejad. Electrochemical Nanosensor for the Simultaneous Determination of Anti-cancer Drugs Epirubicin and Topotecan Using UiO-66-NH2/GO Nanocomposite Modified Electrode. Biosensors 14(5) (2024) 229. https://doi.org/10.3390/bios14050229

S.B. Prasanna, A.A.A. Bahajjaj, Y.H. Lee, Y.C. Lin, U. Dhawan, R. Sakthivel, R.J. Chung. Highly responsive and sensitive non-enzymatic electrochemical sensor for the detection of β-NADH in food, environmental and biological samples using AuNP on polydopamine/titanium carbide composite. Food Chemistry 426 (2023) 136609. https://doi.org/10.1016/j.foodchem.2023.136609

B. Tao, W. Yang, F. Miao, Y. Zang, P.K. Chu. A sensitive enzyme-free electrochemical sensor composed of Co3O4/CuO@ MWCNTs nanocomposites for detection of L-lactic acid in sweat solutions. Materials Science and Engineering: B 288 (2023) 116163. https://doi.org/10.1016/j.mseb.2022.116163

P.A. Pushpanjali, J.G. Manjunatha, B.M. Amrutha, N. Hareesha. Development of carbon nanotube-based polymer-modified electrochemical sensor for the voltammetric study of Curcumin. Materials Research Innovations 25 (2021) 412-420. https://doi.org/10.1080/14328917.2020.1842589

A. Basande, H. Beitollahi. Electrocatalytic response of nitrogen-doped hollow carbon spheres modified glassy carbon electrode for sulphite detection in water. Journal of Electrochemical Science and Engineering 13(6) (2023) 937-948. https://doi.org/10.5599/jese.1966

M.M. Charithra, J.G. Manjunatha. Electrochemical sensing of paracetamol using electropolymerised and sodium lauryl sulfate modified carbon nanotube paste electrode. ChemistrySelect 5(30) (2020) 9323-9329. https://doi.org/10.1002/slct.202002626

S. Cheraghi, M.A. Taher, H. Karimi-Maleh, F. Karimi, M. Shabani-Nooshabadi, M. Alizadeh, A. Al-Othman, N. Erk, P.K.Y. Raman, C. Karaman. Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere 287 (2022) 132187. https://doi.org/10.1016/j.chemosphere.2021.132187

G. Tigari, J.G. Manjunatha. Poly (glutamine) film-coated carbon nanotube paste electrode for the determination of curcumin with vanillin: an electroanalytical approach. Monatshefte für Chemie-Chemical Monthly 151 (2020) 1681-1688. https://doi.org/10.1007/s00706-020-02700-8

M.M. Charithra, J.G. Manjunatha. Electrochemical sensing of adrenaline using surface modified carbon nanotube paste electrode. Materials Chemistry and Physics 262 (2021) 124293. https://doi.org/10.1016/j.matchemphys.2021.124293

J.G. Manjunatha. Highly sensitive polymer based sensor for determination of the drug mitoxantrone. J. Surface Sci. Technol. 34 (2018) 74-80. https://doi.org/10.18311/jsst/2018/15838

Z. Sarbandian, H. Beitollahi. An electrochemical sensor based on a modified glassy carbon electrode for detection of epinephrine in the presence of theophylline. ADMET and DMPK 12(2) (2024) 391-402. https://doi.org/10.5599/admet.2082

H. Beitollahi, S. Tajik, S.Z. Mohammadi, M. Baghayeri. Voltammetric determination of hydroxylamine in water samples using a 1-benzyl-4-ferrocenyl-1H-[1, 2, 3]-triazole/carbon nanotube-modified glassy carbon electrode. Ionics 20 (2014) 571-579. https://doi.org/10.1007/s11581-013-1004-0

W. Zhong, J. Zou, Q. Yu, Y. Gao, F. Qu, S. Liu, H. Zhou, L. Lu. Ultrasensitive indirect electrochemical sensing of thiabendazole in fruit and water by the anodic stripping voltammetry of Cu2+ with hierarchical Ti3C2Tx-TiO2 for signal amplification. Food Chemistry 402 (2023) 134379. https://doi.org/10.1016/j.foodchem.2022.134379

Y. Zhang, N. Li, Y. Xu, M. Yang, X. Luo, C. Hou, D. Huo. An ultra-sensitive electrochemical aptasensor based on Co-MOF/ZIF-8 nano-thin-film by the in-situ electrochemical synthesis for simultaneous detection of multiple biomarkers of breast cancer. Microchemical Journal 187 (2023) 108316. https://doi.org/10.1016/j.microc.2022.108316

M. Guo, G. Zhu, Y. Mishchenko, A. Butenko, V. Kovalenko, T. Rozhkova, H. Zhao. Highly sensitive electrochemical detection of gallic acid in tea samples by using single-walled carbon nanotubes@ silica dioxide nanoparticles decorated electrode. International Journal of Electrochemical Science 18(10) (2023) 100291. https://doi.org/10.1016/j.ijoes.2023.100291

H. Maseed, V.M. Reddy Yenugu, S.S. Devarakonda, S. Petnikota, M. Gajulapalli, V.V. Srikanth. Peroxidase-like Fe3O4 nanoparticle/few-layered graphene composite for electrochemical detection of dopamine, ascorbic acid, and uric acid. ACS Applied Nano Materials 6(19) (2023) 18531-18538. https://doi.org/10.1021/acsanm.3c04018

J.G. Manjunatha. A promising enhanced polymer modified voltammetric sensor for the quantification of catechol and phloroglucinol. Analytical and Bioanalytical Electrochemistry 12(7) (2020) 893-903.

Z. Zhang, H. Karimi-Maleh. In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324 (2023) 138302. https://doi.org/10.1016/j.chemosphere.2023.138302

J. Saranya, B.S. Sreeja, P. Senthil Kumar. Microwave assisted cisplatin-loaded CeO2/GO/c-MWCNT hybrid as drug delivery system in cervical cancer therapy. Applied Nanoscience 13(6) (2023) 4219-4233. https://doi.org/10.1007/s13204-023-02856-9

M. Bijad, H. Karimi-Maleh, M. Farsi, S.A. Shahidi. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. Journal of Food Measurement and Characterization 12(1) (2018) 634-640. https://doi.org/10.1007/s11694-017-9676-1

Y. Zhang, B. Zhang, J. Li, J. Liu, X. Huo, F. Kang. SnSe nano-particles as advanced positive electrode materials for rechargeable aluminum-ion batteries. Chemical Engineering Journal 403 (2021) 126377. https://doi.org/10.1016/j.cej.2020.126377

D. Ozturk. Fe3O4/Mn3O4/ZnO-rGO hybrid quaternary nano-catalyst for effective treatment of tannery wastewater with the heterogeneous electro-Fenton process: Process optimization. Science of the Total Environment 828 (2022) 154473. https://doi.org/10.1016/j.scitotenv.2022.154473

A. Sheikh, M.A. Abourehab, A.S. Tulbah, P. Kesharwani. Aptamer-grafted, cell membrane-coated dendrimer loaded with doxorubicin as a targeted nanosystem against epithelial cellular adhesion molecule (EpCAM) for triple negative breast cancer therapy. Journal of Drug Delivery Science and Technology 86 (2023) 104745. https://doi.org/10.1016/j.jddst.2023.104745

Manjunatha JG. Fabrication of efficient and selective modified graphene paste sensor for the determination of catechol and hydroquinone. Surfaces 3(3) (2020) 473-83. https://doi.org/10.3390/surfaces3030034

S. Venkateswarlu, H. Mahajan, A. Panda, J. Lee, S. Govindaraju, K. Yun, M. Yoon. Fe3O4 nano assembly embedded in 2D-crumpled porous carbon sheets for high energy density supercapacitor. Chemical Engineering Journal 420 (2021) 127584. https://doi.org/10.1016/j.cej.2020.127584

T.V.H. Luu, N.T.M. Tho, T.T.T. Thuy, L.N. Thong, N.T. Dung, P.H. Dang, Synthetization pill-like C-doped ZnO nano-photocatalyst for removing ofloxacin and methylene blue under visible light. Journal of Sol-Gel Science and Technology 110(1) (2024) 204-220. https://doi.org/10.1007/s10971-024-06348-2

H. Song, Y. Peng, C. Wang, L. Shu, C. Zhu, Y. Wang, H. He, W. Yang. Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angewandte Chemie, 135(17) (2023) 202218472. https://doi.org/10.1002/ange.202218472

F. Peng, Z. Zhang, M. Sun, Y. Shao, Y. Feng. evaluating performance of nano-Fe3O4 modified granular activated carbon assisted wastewater treatment in anaerobic fluidized membrane bioreactor. Bioresource Technology 374 (2023) 128737. https://doi.org/10.1016/j.biortech.2023.128737

L.D. Pompeu, P.C.L. Muraro, G. Chuy, B.S. Vizzotto, G. Pavoski, D.C.R. Espinosa, L. da Silva Fernandes, W.L. da Silva. Adsorption for rhodamine b dye and biological activity of nano-porous chitosan from shrimp shells. Environmental Science and Pollution Research 29(33) (2022) 49858-49869. https://doi.org/10.1007/s11356-022-19259-y

H. Beitollahi, M. Shahsavari, I. Sheikhshoaie, S. Tajik, P.M. Jahani, S.Z. Mohammadi, A.A. Afshar. Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A. Food and Chemical Toxicology 161 (2022) 112824. https://doi.org/10.1016/j.fct.2022.112824

C. Karaman, O. Karaman, P.L. Show, Y. Orooji, H. Karimi-Maleh. Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: equilibrium, kinetics, thermodynamics and artificial neural network modeling. Environmental Research 207 (2022) 112156. https://doi.org/10.1016/j.envres.2021.112156

M. Shahsavari, S. Tajik, I. Sheikhshoaie, F.G. Nejad, H. Beitollahi. Synthesis of Fe3O4@ copper (II) imidazolate nanoparticles: Catalytic activity of modified graphite screen printed electrode for the determination of levodopa in presence of melatonin. Microchemical Journal 170 (2021) 106637. https://doi.org/10.1016/j.microc.2021.106637

S. Pareek, U. Jain, M. Bharadwaj, K. Saxena, S. Roy, N. Chauhan. An ultrasensitive electrochemical DNA biosensor for monitoring Human papillomavirus-16 (HPV-16) using graphene oxide/Ag/Au nano-biohybrids. Analytical Biochemistry 663 (2023) 115015. https://doi.org/10.1016/j.ab.2022.115015

Z. Zhang, H. Karimi-Maleh. Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal. Advanced Composites and Hybrid Materials 6(2) (2023) 68. https://doi.org/10.1007/s42114-023-00652-1

H.E. Turan, H. Medetalibeyoglu, I. Polat, B.B. Yola, N. Atar, M.L. Yola. Graphene quantum dots incorporated NiAl2O4 nanocomposite based molecularly imprinted electrochemical sensor for 5-hydroxymethyl furfural detection in coffee samples. Analytical Methods 15(15) (2023) 1932-1938. https://doi.org/10.1039/D3AY00382E

M.M. Khan, H. Shaikh, A. Al Souwaileh, M.Y. Khan, M. Batool, S.Q. Memon, A.R. Solangi. A highly selective nickel-aluminum layered double hydroxide nanostructures based electrochemical sensor for detection of pentachlorophenol. Arabian Journal of Chemistry 17(3) (2024) 105604. https://doi.org/10.1016/j.arabjc.2024.105604

T. Thenrajan, S. Nagappan, S. Kundu, J. Wilson. Nickel iron based layered double hydroxides as effective electrochemical sensor towards epicatechin. Inorganic Chemistry Communications 153 (2023) 110861. https://doi.org/10.1016/j.inoche.2023.110861

X.B. Joseph, J.N. Baby, S.F. Wang, M. George, Emerging carbonate anion intercalated-ZnCr-layered double hydroxide/vanadium carbide nanocomposite: A electrochemical sensor for diethofencarb fungicide monitoring. Chemosphere. 335 (2023) 139099.

https://doi.org/10.1016/j.chemosphere.2023.139099

H. Sohrabi, E. Dezhakam, A. Khataee, E. Nozohouri, M.R. Majidi, N. Mohseni, E. Trofimov, Y. Yoon. Recent trends in layered double hydroxides based electrochemical and optical (bio) sensors for screening of emerging pharmaceutical compounds. Environmental Research 211 (2022) 113068. https://doi.org/10.1016/j.envres.2022.113068

L. Zhang, Y. Han, M. Sun, S. Li. Non-enzymatic electrochemical sensor based on ionic liquid [BMIM][PF6] functionalized zirconium copper bimetallic MOF composite for the detection of nitrite in food samples. Food Chemistry 456 (2024) 140023. https://doi.org/10.1016/j.foodchem.2024.140023

C. Xue, R. Jamal, T. Abdiryim, X. Liu, F. Liu, F. Xu, Q. Cheng, X. Tang, N. Fan. An ionic liquid-modified PEDOT/Ti3C2TX based molecularly imprinted electrochemical sensor for pico-molar sensitive detection of L-Tryptophan in milk. Food Chemistry 449 (2024) 139114. https://doi.org/10.1016/j.foodchem.2024.139114

N.M. Xhakaza, R. Chokkareddy, G.G. Redhi. Ionic liquid based electrochemical sensor for the detection of efavirenz. Journal of Molecular Liquids 368 (2022) 120444. https://doi.org/10.1016/j.molliq.2022.120444

Z. Zhang, H. Zheng, Y. Liu, S. Ma, Q. Feng, J. Qu, X. Zhu. Highly sensitive detection of multiple antiviral drugs using graphitized hydroxylated multi-walled carbon nanotubes/ionic liquids-based electrochemical sensors. Environmental Research 249 (2024) 118466. https://doi.org/10.1016/j.envres.2024.118466

H. Beitollahi, F. Garkani Nejad, Z. Dourandish, M.R. Aflatoonian. Electrochemical detection of carmoisine in the presence of tartrazine on the surface of screen printed graphite electrode modified with nickel-cobalt layered double hydroxide ultrathin nanosheets. Chemosphere 337 (2023) 139369. https://doi.org/10.1016/j.chemosphere.2023.139369

Downloads

Published

04-09-2024 — Updated on 04-09-2024

How to Cite

Mohammadzadeh Jahani , P., Garkani Nejad, F., Zaimbashi, R., Aflatoonian, M. R., Tajik, S., & Beitollahi, H. (2024). Determination of methotrexate using carbon paste electrode modified with ionic liquid/Ni-Co layered double hydroxide nanosheets as a voltammetric sensor. ADMET and DMPK, 12(4), 637–648. https://doi.org/10.5599/admet.2460

Issue

Section

Original Scientific Articles