Voltammetric determination of sumatriptan in the presence of naproxen using a modified screen printed electrode

Original scientific article

Authors

DOI:

https://doi.org/10.5599/admet.2635

Keywords:

Simultaneous determination, real sample analysis, nanomaterials, drug analysis

Abstract

Background and purpose: Sumatriptan is used to alleviate symptoms of migraine headaches, particularly during acute attacks. Naproxen is a medication that provides relief from pain, inflammation, and fever. Therefore, determination of them is important. Experimental approach: In the present work, CoMoO4 nanos¬heets were synthesized in a basic and easy way. A screen-printed graphite electrode's surface was altered using the as-prepared CoMoO4 nanosheets' high electroactivity to create a CoMoO4 nanosheets-modified screen-printed electrode (CoMoO4 NSs-SPE), which was then employed for sumatriptan's electrochemical oxidation. Due to the superior electron transfer characteristics and catalytic activity of the produced CoMoO4 nanosheets, the results demonstrated a notable improvement in sumatriptan's current responses. This study examined the electrochemical behavior of sumatriptan on the CoMoO4 NSs-SPE utilizing a number of methods, including as chronoamperometry, cyclic voltammetry, and differential pulse voltammetry (DPV). Key results: With a high sensitivity of 0.0718 μA/μM and a good correlation value of 0.9998, a linear calibration curve was obtained over a broad concentration range of 0.02-600.0 μM, suggesting a strong linear connection between the concentration and the response. Based on a signal-to-noise ratio of 3, the limit of detection for sumatriptan was determined to be 0.01 μM, suggesting a high degree of sensitivity for the detection technique. DPV results showed that the CoMoO4 nanosheets-modified screen-printed electrode (CoMoO4 NSs-SPE) could detect naproxen and sumatriptan at the same time. Conclusion: The created sensor's usefulness and efficacy in real-world applications were demonstrated when it was successfully used to identify the target analytes in actual samples.

Downloads

Download data is not yet available.

References

C. Ike, B. Devine. PND34 - Cost-Utility Analysis of Oral Sumatriptan Versus Oral Ergotamine/Caffeine in the Treatment of Acute Migraine Attacks. Value in Health 21 (2018) S207. https://doi.org/10.1016/j.jval.2018.04.1407

J.D. Classey, T. Bartsch, P.J. Goadsby. Distribution of 5-HT1B, 5-HT1D and 5-HT1F receptor expression in rat trigeminal and dorsal root ganglia neurons: Relevance to the selective anti-migraine effect of triptans. Brain Research 1361 (2010) 76-85. https://doi.org/10.1016/j.brainres.2010.09.004

J.J. Seo, J. Park, M.H. Bae, M.S. Lim, S.J. Seong, J. Lee, S.M. Park, H.W. Lee, Y.R. Yoon. Rapid determination of sumatriptan in human plasma by ultra performance liquid chromatography-tandem mass spectrometry and its application to clinical pharmacokinetic study. Journal of Chromatography B 919-920 (2013) 38-42. https://doi.org/10.12793/tcp.2017.25.2.106

A. Flexman, S. Schwarz, G. Del Vicario. An unusual cause of dark blood aspiration during arterial cannulation: Intraoperative detection of sulfhemoglobinemia in a patient taking sumatriptan. Canadian Journal of Anaesthesia 54 (2007) 44101-44101. https://doi.org/10.1007/BF03019905

S. Ravi, Y. Darwis, N. Khan. Development and validation of an RP-HPLC-UV method for analysis of sumatriptan succinate in pharmaceutical dosage forms. Acta Chromatographica 21 (2009) 421-432. https://doi.org/10.1556/ACHROM.21.2009.3.6

Y.R. Reddy, K.K. Kumar, M. Reddy, K. Mukkanti. Rapid simultaneous determination of sumatriptan succinate and naproxen sodium in combined tablets by validated ultra performance liquid chromatographic method. Journal of Analytical & Bioanalytical Techniques 2 (2011). https://doi.org/10.4172/2155-9872.1000121

C. Shah, B. Suhagia, N. Shah, R. Shah. Development and validation of a HPTLC method for the estimation of sumatriptan in tablet dosage forms. Indian Journal of Pharmaceutical Sciences 70 (2008) 831-834. https://doi.org/10.4103/0250-474X.49138

K.M. Al Azzam, B. Saad, C.Y. Tat, I. Mat, H.Y. Aboul-Enein. Stability-indicating micellar electrokinetic chromatography method for the analysis of sumatriptan succinate in pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis 56 (2011) 937-943. https://doi.org/10.1016/j.jpba.2011.08.007h

M. Ayad, H. Abdellatef, M. Hosny, N. Kabil, Conductometric determination of certain pharmacological drugs using silver and bismuth. International Research Journal of Pharmaceutical and Applied Sciences 3(4) (2013) 140-148. https://scienztech.org/index.php/irjpas/article/view/592

K.N. Prashanth, K. Basavaiah, C. Madatil Xavier. Development and validation of UV-spectrophotometric methods for the determination of sumatriptan succinate in bulk and pharmaceutical dosage form and its degradation behavior under varied stress conditions. Journal of the Association of Arab Universities for Basic and Applied Sciences 15 (2014) 43-52. https://doi.org/10.1016/j.jaubas.2013.03.004.

M.H. Abo Zaid, S.A. El abass, N. El-Enany, F. Aly. Spectrofluorimetric investigation for determination of sumatriptan succinate: application to tablets and spiked human plasma. Luminescence 36 (2021) 755-760. https://doi.org/10.1002/bio.4000

A.H. Oghli, A. Soleymanpour. Ultrasensitive electrochemical sensor for simultaneous determination of sumatriptan and paroxetine using molecular imprinted polymer/sol-gel/polyoxometalate/rGO modified pencil graphite electrode. Sensors and Actuators B: Chemical 344 (2021) 130215. https://doi.org/10.1016/j.snb.2021.130215

M. Ahmadi-Kashani, H. Dehghani. A new multifunctional electrocatalyst based on PbS nanostructures decorated with graphene/polyaniline-modified glassy carbon electrode for selective detection of non-steroidal anti-inflammatory drug naproxen. Microchemical Journal 200 (2024) 110320. https://doi.org/10.1016/j.microc.2024.110320

M. Fillet, L. Fotsing, J. Bonnard, J. Crommen. Stereoselective determination of S-naproxen in tablets by capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis 18 (1998) 799-805. https://doi.org/10.1016/S0731-7085(98)00218-0

M. Ajaz Hussain, I. Shad, I. Malik, F. Amjad, M. Nawaz Tahir, N. Ullah, M. Ashraf, M. Sher. Design, characterization and enhanced bioavailability of hydroxypropylcellulose-naproxen conjugates. Arabian Journal of Chemistry 13 (2020) 5717-5723. https://doi.org/10.1016/j.arabjc.2020.04.010.

Y. Sakaguchi, H. Yoshida, T. Hayama, M. Yoshitake, M. Itoyama, K. Todoroki, M. Yamaguchi, H. Nohta. Fluorous derivatization and fluorous-phase separation for fluorometric determination of naproxen and felbinac in human plasma. Journal of Pharmaceutical and Biomedical Analysis 55 (2011) 176-180. https://doi.org/10.1016/j.jpba.2011.01.011

P.C. Damiani, M.D. Borraccetti, A.C. Olivieri. Direct and simultaneous spectrofluorometric determination of naproxen and salicylate in human serum assisted by chemometric analysis. Analytica Chimica Acta 471 (2002) 87-96. https://doi.org/10.1016/S0003-2670(02)00925-X.

Y. Song, S. Zhang, D. Sun, X. Li, G. Meng, X. Zhang, B. Wang. Chiral gold nanorod vertical arrays for enantioselective chemiluminescence recognition of naproxen and mechanism revealing. Chemical Engineering Journal 482 (2024) 148900. https://doi.org/10.1016/j.cej.2024.148900.

M.A.A. Ragab, E.I. El-Kimary. High performance liquid chromatography with photo diode array for separation and analysis of naproxen and esomeprazole in presence of their chiral impurities: Enantiomeric purity determination in tablets. Journal of Chromatography A 1497 (2017) 110-117. https://doi.org/10.1016/j.chroma.2017.03.059.

E. Zarei, M.R. Khaleghi, A. Asghari. Development of ZnO-Pd/Bi2O3 nanocomposite modified carbon paste electrode as a sensor for the simultaneous determination of piroxicam and naproxen. Microchemical Journal 207 (2024) 111924. https://doi.org/10.1016/j.microc.2024.111924.

J. Molina, L. Olcina, J. Bonastre, F. Cases. Naproxen electrooxidation using carbon paper electrodes modified with reduced graphene oxide and platinum nanoparticles. Journal of Electroanalytical Chemistry 967 (2024) 118454. https://doi.org/10.1016/j.jelechem.2024.118454

G. Muruganandam, S. Srinivasan, N. Nesakumar, G. Hariharan, B.M. Gunasekaran. Electrochemical investigation on naproxen sensing and steady-state diffusion analysis using Ni-Fe layered double hydroxide modified gold electrode. Measurement 220 (2023) 113389. https://doi.org/10.1016/j.measurement.2023.113389.

C.M. Hung, C.P. Huang, S.K. Chen, C.W. Chen, C.D. Dong. Electrochemical analysis of naproxen in water using poly(L-serine)-modified glassy carbon electrode. Chemosphere 254 (2020) 126686. https://doi.org/10.1016/j.chemosphere.2020.126686.

D.Tesnim, A.M. Díez, H.B. Amor, M. A. Sanromán, M. Pazos. Synthesis and characterization of eco-friendly cathodic electrodes incorporating nano Zero-Valent iron (NZVI) for the electro-fenton treatment of pharmaceutical wastewater. Chemical Engineering Journal 502 (2024) 158099. https://doi.org/10.1016/j.cej.2024.158099.

J.U. Lee, S.Y. Park, K. Lee, S. Farzana, H.H. Chun, B.S. Shin, P.C. Lee. Laser micro/nano structuring of three-dimensional porous gradient graphene: Advanced heater for antibacterial surfaces and ion-selective electrode for sweat sensing. Carbon 230 (2024) 119611. https://doi.org/10.1016/j.carbon.2024.119611.

M. Mekersi, M. Ferkhi, A. Khaled, N. Maouche, M. Foudia, E.Kuyumcu Savan. Electrochemical Bio-Monitoring of the Analgesic Drug Paracetamol, the Antipsychotic Sulpiride, and the Antibiotic Bromhexine Hydrochloride Using Modified Carbon Paste Electrode Based on Ca0.7La0.3Fe0.3Ni0.7O3 Nano-Sized Particles and Black Carbon. Surfaces and Interfaces 53 (2024) 104941. https://doi.org/10.1016/j.surfin.2024.104941.

V. Vinothkumar, A. Poongan, A. Mandal, P. Venkatesh. Electrochemical bio-sensor of caffeine in food beverages on using silver vanadium oxide decorated in graphitic carbon nitride (AgVO@g-CN) Nano composite modified glassy carbon electrode. Sensing and Bio-Sensing Research 43 (2024) 100637. https://doi.org/10.1016/j.sbsr.2024.100637.

H.A.M. Hendawy, G.M.G. Eldin, A.M. Fekry. A metal substituted nano ferrite (M = Zn, Cu, Fe and mn; x=0 and 0.5)] improved Screen-Printed electrode for anodic determination of Toldimfos sodium. Microchemical Journal 185 (2023) 108267. https://doi.org/10.1016/j.microc.2022.108267.

H. Duan, Z. Cheng, Y. Xue, Z. Cui, M. Yang, S. Wang. Influences of nano-effect on electrochemical thermodynamics of metal nanoparticles electrodes. Journal of Electroanalytical Chemistry 882 (2021) 115037. https://doi.org/10.1016/j.jelechem.2021.115037.

L.M.A. Melo, E. Bernalte, A.C.M. Oliveira, R.D. Crapnell, R.M. Verly, R.A.A. Munoz, W.T.P. dos Santos, C.E. Banks. Novel colorimetric-electrochemical methods for selective identification and quantification of Scopolamine in forensic analysis using screen-printed graphite electrodes and Dragendorff reagent. Sensors and Actuators B: Chemical 427 (2025) 137131. https://doi.org/10.1016/j.snb.2024.137131.

M. Wang, S.Y. Li, C.-K. Gao, X.Q. Fan, Y. Quan, X.H Li, C. Li, N.S. Zhang. The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene aerogels by 3D printing. New Carbon Materials 39 (2024) 283-296. https://doi.org/10.1016/S1872-5805(24)60823-1

A.M. Santos, T.O. Silva, M.H.A. Feitosa, I.G.S. Oliveira, A. Wong, R.S. Souto, F.C. Moraes, L. A.M. Ruotolo, W.R.P. Barros, M.R.V. Lanza. Using a sensitive screen-printed electrode based on printex L6 and polyaniline activated carbon for piroxicam detection. Talanta 285 (2025) 127412. https://doi.org/10.1016/j.talanta.2024.127412

L.D. Chakkarapani, Z. Bytešníková, L. Richtera, M. Brandl. Selective and sensitive determination of phenolic compounds using carbon screen printing electrodes modified with reduced graphene oxide and silver nanoparticles. Applied Materials Today 37 (2024) 10211. https://doi.org/10.1016/j.apmt.2024.102113

N. Nataraj, T.W. Chen, M. Akilarasan, S. Ming Chen, A. Ahmed Al-Ghamdi, M.S. Elshikh. Se substituted 2D-gC3N4 modified disposable screen-printed carbon electrode substrate: A bifunctional nano-catalyst for electrochemical and absorption study of hazardous fungicide. Chemosphere 302 (2022) 134765. https://doi.org/10.1016/j.chemosphere.2022.134765

Downloads

Published

19-02-2025

Issue

Section

Pharmaceutical and biomedical analysis

How to Cite

Voltammetric determination of sumatriptan in the presence of naproxen using a modified screen printed electrode: Original scientific article. (2025). ADMET and DMPK, 13(2), 2635. https://doi.org/10.5599/admet.2635

Similar Articles

1-10 of 274

You may also start an advanced similarity search for this article.