Modeling the effect of rib and channel dimensions on the performance of high temperature fuel cells-parallel configuration

  • Balaji Krishnamurthy Department of Chemical Engineering, BITS Pilani, Hyderabad 500078, India
  • Vikalp Jha Department of Chemical Engineering, BITS Pilani, Hyderabad 500078, India
Keywords: Fuel cell, modeling, rib width, channel width, pressure drop

Abstract

This work investigates the effect of rib width, channel width and channel depth on the performance of a high temperature proton exchange membrane (HT-PEM) fuel cell with parallel flow field configuration. Simulation results indicate that the rib width has the maximum impact on the performance of the fuel cell. The lower the rib width, the better is performance of HT-PEM fuel cell. Changing the channel width seems to have a moderate effect, while changing the channel depth seems to have very limited impact on the fuel cell performance. The effect of various rib width and channel dimensions on the pressure drop across the channel is also studied. The concentration profile of the oxygen across the cathode gas channel is modeled as a function of the channel width and depth. Modeling results are found to be in well agreement with experimental data.

Downloads

Download data is not yet available.

References

Y. G. Yoon, W. Y. Lee, G. G. Park, T. H. Park, T. H. Yang, S. H. Kim, Electrochimica Acta 50(2-3) (2004) 709-712.

S. Shimpalee, J. W. Van Zee, International Journal of Hydrogen Energy 32(7) (2007) 842-856.

S. Shimpalee, S. Greenway, J. W. Van Zee, Journal of Power Sources 160(1) (2006) 398-406.

S. S. Hsieh, K. M. Chu, Journal of Power Sources 173(1) (2007) 222-232.

A. P. Manso, F. F. Marzo, J. Barrancco, X. Garikano, M. Garmendia Mujika, International Journal of Hydrogen Energy 37(20) (2012) 15256-15287.

X. D. Wang, Y. Y. Duan, W. M. Yan, X. F. Peng, Electrochimica Acta 53(16) (2008) 5335-5343.

X. D. Wang, W. M. Yan, Y. Y. Duan, F. B. Weng, G. B. Jung, C. Y. Lee, Energy Conversion and Management 51(5) (2010) 959-968.

M. Z. Chaudhary, O. Genc, S. Toros, International Journal of Hydrogen Energy 43(23) (2018) 10798-10809.

L. J. Yu, G. P Ren, M. J. Qin, X. M. Jiang, Renewable Energy 34(3) (2009) 530-543.

S. G. Goebel, Journal of Power Sources 196(18) (2011) 7550-7554.

C. Wang, Q. Zhang, S. Shen, X. Yan, F. Zhu, X. Cheng, J. Zhang, Scientific Reports (2017) 7:43447, https://doi.org/10.1038/srep43447

H. Liu, P. Li, K. Wang, International Journal of Hydrogen Energy 38(23) (2013) 9835-9846.

E. U. Ubong, X. Wang, Z. Shi, Journal of the Electrochemical Society 156(10) (2009) B1276-B1282.

©2020 by the authors; licensee IAPC, Zagreb, Croatia. This article is an open-access article

distributed under the terms and conditions of the Creative Commons Attribution license

(https://creativecommons.org/licenses/by/4.0/)

Published
19-12-2020
Section
Bioelectrochemistry & Fuel Cells