Modelling the effect of anode particle radius and anode reaction rate constant on capacity fading of Li-ion batteries

Original scientific paper

Keywords: SEI, potential drop, side reaction, discharge
Graphical Abstract


This paper investigates the effect of anode particle radius and anode reaction rate constant on the capacity fading of lithium-ion batteries. It is observed through simulation results that capacity fade will be lower when the anode particle size is smaller. Simulation results also show that when reaction rate constant is highest, the capacity loss is the lowest of lithium-ion battery. The potential drop across the SEI layer (solid electrolyte interphase) is studied as a function of the anode particle radius and anode reaction rate constant. Modelling results are compared with experimental data and found to compare well.



Download data is not yet available.


B. S. Haran, P. Ramadass, R. E. White, B. N. Popov, Seventeenth Annual Battery Conference on Applications and Advances, Proceedings of Conference (Cat. No. 02TH8576), Long Beach, CA, USA, 2002, 13-18.

X. Han, M. Ouyang, L. Lu, J. Li, Energies 7(8) (2014) 4895-4909.

B. Y. Liaw, E. P. Roth, R. G. Jungst, G. Nagasubramanian, H. L. Case, D. H. Doughty, Journal of Power Sources 119–121 (2003) 874-886.

V. Ramadesigan, K. Chen, N. A. Burns, V. Boovaragavan, R. D. Braatz, V. R., Journal of the Electrochemical Society 158 (2011) A1048.

A. M. Colclasure, K. A. Smith, R. J. Kee, Electrochimica Acta 58 (2011) 33-43.

M. B. Pinson, M. Z. Bazant, Journal of the Electrochemical Society 160 (2013) A243-A250.

B. Ziv, V. Borgel, D. Aurbach, J.-H. Kim, X. Xiao, B.R. Powell, Journal of the Electrochemical Society 161 (2014) A1672-A1680.

L. Liu, J. Park, X. Lin, A.M. Sastry, W. Lu, Journal of Power Sources 268 (2014) 482-490.

J. Guo, Z. Li, T. Keyser, Y. Deng, Proceedings of the 2014 Industrial and Systems Engineering Research Conference, Montréal, Canada (2014) 913-919.

S. Ramesh, B. Krishnamurthy, Journal of the Electrochemical Society 162 (2015) A545-A552.

S. Ramesh, K.V. Ratnam, B. Krishnamurthy, International Journal of Electrochemistry 2015 (2015) 1-9.

J. Xu, R. D. Deshpande, J. Pan, Y.-T. Cheng, V. S. Battaglia, Journal of the Electrochemical Society 162 (2015) A2026-A2035.

A. H. N. Shirazi, M. R. Azadi Kakavand, T. Rabczuk, Journal of Nanotechnology in Engineering and Medicine 6(4) (2015) 041003.

R. Singhvi, R. Nagpal, B. Krishnamurthy, Journal of the Electrochemical Society 163 (2016) A1214-A1218.

J. Liang Cheng, X. Hai LI, Z. Xing Wang, H. Jun Guo, Transactions of Nonferrous Metals Society of China 27 (2017) 1602-1607.

A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, B. Wu, eTransportation 1 (2019) 100011.

S. Gantenbein, M. Schönleber, M. Weiss, E. Ivers-Tiffée, Sustainability 11(23) (2019) 6697.

D. Lee, B. Koo, C. B. Shin, S. Y. Lee, J. Song, I. C. Jang, J. J. Woo, Energies 12(22) (2019) 4386.

S. Khaleghi Rahimian, M. M. Forouzan, S. Han, Y. Tang, Electrochimica Acta 348 (2020) 136343.

C. Inc., Batteries & Fuel Cells Module User’s Guide, COMSOL Multiphysics Help (2012).

A. K. Rai, B. J. Paul, J. Kim, Electrochimica Acta 90 (2013) 112-118.

H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. Mcdowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nature Nanotechnology 7(5) (2012) 310-315.

H. Buqa, D. Goers, M. Holzapfel, M. E. Spahr, P. Novak, Journal of the Electrochemical Society 152(2) (2005) A474-A481.

T. Drezen, H. E. Kwon, P. Bowen, I. Teerlinck, M. Isono, I. Exnar, Journal of Power Sources 174 (2007) 949-953

G. T. K. Fey, Y. G. Chen, H. M. Kao, Journal of Power Sources 189 (2009) 169-178.

W. Mei, H. Chen, J. Sun, Q.Wang, Sustainable Energy and Fuels 3 (2019) 148-165

Electrochemical Engineering