Modeling the performance of direct carbon solid oxide fuel cell -anode supported configuration

  • Sanjeev Raj Department of Chemical Engineering, BITS Pilani, Hyderabad 500078, India
  • Sakthi Gnanasundaram Department of Chemical Engineering, BITS Pilani, Hyderabad 500078, India
  • Balaji Krishnamurthy Department of Chemical Engineering, BITS Pilani, Hyderabad 500078, India
Keywords: Overpotential, activation, direct carbon, anode design parameters, current, potential
Graphical Abstract

Abstract

A mathematical model is developed to study the performance of a direct carbon solid oxide fuel cell system (DC-SOFC). Simulation results indicate that in the anode supported configuration, anode design parameters (porosity, tortuosity and anode thickness) play very important role in the performance of DC-SOFC, presented as the polarization curve. The effect of Ag content in anode electrode is found to play a significant role in the performance of the DC-SOFC. The effect of operating parameters, namely pressure and temperature, on the overpotentials (concentration, activation and ohmic) are studied. The concentration profiles of gases (CO2 and CO) as a function of operating current density across the anode electrode is studied. Model results are compared with experimental data and found to compare well.

Downloads

Download data is not yet available.

References

H. Xu, B. Chen, J. Liu, N. Meng, Applied Energy 178 (2016) 353-362 https://doi.org/¬10.1016/-j.apenergy.2016.06.064.

H. Xu, B. Chen, H. Zhang, P. Tan, G. Yang, J. Irvine, N. Meng, Journal of Power Sources 382 (2018) 135-143 https://doi.org/10.1016/j.jpowsour.2018.02.033.

Z. Yang, H. Xu, B. Chen, P. Tan, H. Zhang, N. Meng, Energy Conversion and Management 171 (2018) 279-286. https://doi.org/10.1016/j.enconman.2018.05.100

H. Xu, B. Chen, H. Zhang, Q. Sun, G. Yang, N. Meng, International Journal of Hydrogen Energy 42 (2017) 15641-15651 https://doi.org/10.1016/j.ijhydene.2017.05.075.

H. Zhang, J. Chen, J. Zhang, International Journal of Hydrogen Energy 38 (2013) 7947-7954 https://doi.org/10.1016/j.ijhydene.2013.04.107.

Y. Bai, Y. Liu, Y. Tang, Y. Xie, J. Liu, International Journal of Hydrogen Energy 36 (2011) 9189-9194 https://doi.org/10.1016/j.ijhydene.2011.04.171.

B. R. Alexander, R. E. Mitchell, T. M. Gür, Journal of the Electrochemical Society 158 (2011) B505-B513 https://doi.org/10.1149/1.3560475.

B. R. Alexander, R. E. Mitchell, T. M. Gür, Journal of the Electrochemical Society 159 (2012) F810-F814 https://doi.org/10.1149/1.3560475.

S. K. Das, Journal of Electrochemical Energy Conversion and Storage 17 (2020) 031017. https://doi.org/10.1149/2.032212jes.

R. Sanjeev, G. Sakthi, B. Krishnamurthy, Ionics 27 (2020) 729–741 https://doi.org/10.1007/s11581-020-03834-9.

Published
09-02-2021
Section
Bioelectrochemistry & Fuel Cells