Modeling the velocity profiles in vanadium redox flow batteries-serpentine flow field

Original scientific paper

Authors

  • Sarede Yadav Department of Chemical Engineering, BITS Pilani, Hyderabad-500078, India
  • Balaji Krishnamurthy Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India https://orcid.org/0000-0003-0464-536X

DOI:

https://doi.org/10.5599/jese.1610

Keywords:

Viscosity, porosity, channel height, channel width
Graphical Abstract

Abstract

A mathematical model is developed to study the effect of performance parameters on the velocity profiles in a vanadium redox flow battery. The effects of flow rate, viscosity, porosity, electrode thickness, and the effect of channel height on the velocity profile in a vanadium redox flow battery are studied. Quantitative analysis of velocity profiles at the mid-height of the channel, at the channel-electrode interface, and mid-height of electrode thickness is done. The channel height, thickness and porosity are found to have a substantial effect on the velocity profiles across the battery. It was found that the velocity at the electrode-channel interface is about three orders of magnitude lower than the velocity in the channels. Model results are compared with experimental data and found to agree well.

Downloads

Download data is not yet available.

References

H. Ibrahim, A. Ilinca, J. Perron, Renewable and Sustainable Energy Reviews 12 (2008) 1221–1250. https://doi.org/10.1016/j.rser.2007.01.023

M. Ding, T. Liu, Y. Zhang, Ionics 26 (2020) 3415–3423. https://doi.org/10.1007/s11581-019-03425-3

G. Kear, A. A. Shah, F. C. Walsh, International Journal of Energy Research 36 (2012) 1105–1120. https://doi.org/10.1002/er.1863

Q. Xu, T. S. Zhao, C. Zhang, Electrochimica Acta 142 (2014) 61–67. https://doi.org/10.1016/j.electacta.2014.07.059

A. Bhattarai, N. Wai, R. Schweiss, A. Whitehead, T. M. Lim, H. H. Hng, Journal of Power Sources 341 (2017) 83–90. https://doi.org/10.1016/j.jpowsour.2016.11.113

A. Parasuraman, T. M. Lim, C. Menictas, M. Skyllas-Kazacos, Electrochimica Acta 101 (2013) 27–40. https://doi.org/10.1016/j.electacta.2012.09.067

M. H. Chakrabarti, N. P. Brandon, S. A. Hajimolana, F. Tariq, V. Yufit, M. A. Hashim, Journal of Power Sources 253 (2014) 150–166. https://doi.org/10.1016/j.jpowsour.2013.12.038

O. Di Blasi, N. Briguglio, C. Busacca, M. Ferraro, V. Antonucci, A. Di Blasi, Applied Energy 147 (2015) 74–81. https://doi.org/10.1016/j.apenergy.2015.02.073

G. Qiu, A.S. Joshi, C.R. Dennison, K.W. Knehr, E.C. Kumbur, Y. Sun, Electrochimica Acta 64 (2012) 46–64. https://doi.org/10.1016/j.electacta.2011.12.065

G, Qiu, C.R. Dennison, K.W. Knehr, E.C Kumbur, Y. Sun, Journal of Power Sources 219 (2012) 223–234. https://doi.org/10.1016/j.jpowsour.2012.07.042

Q. Xu, T. S. Zhao, Progress in Energy and Combustion Science 49 (2015) 40–58. https://doi.org/10.1016/j.pecs.2015.02.001

Q. Zheng, H. Zhang, F. Xing, X. Ma, X. Li, G. Ning, Applied Energy 113 (2014) 1675–1685. https://doi.org/10.1016/j.apenergy.2013.09.021

Q. Xu, T. S. Zhao, C. Zhang, Electrochimica Acta 142 (2014) 61–67. https://doi.org/10.1016/j.jpowsour.2015.08.041

M. Messaggi, P. Canzi, R. Mereu, A. Baricci, F. Inzoli, A. Casalegno, M. Zago, Applied Energy 228 (2018) 1057–1070. https://doi.org/10.1016/j.apenergy.2018.06.148

J. Houser, A. Pezeshki, J. T. Clement, D. Aaron, M. M. Mench, Journal of Power Sources 351 (2017) 96–105. https://doi.org/10.1016/j.jpowsour.2017.03.083

E. Knudsen, P. Albertus, K.T. Cho, A.Z. Weber, A. Kojic, Journal of Power Sources 299 (2015) 617–628. https://doi.org/10.1016/j.jpowsour.2015.08.041

X. Y. Ke, J. M. Prahl, J. I. D. Alexander, R. F. Savinell, Electrochimica Acta 223 (2017) 124–134. https://doi.org/10.1016/j.electacta.2016.12.017

X. Y. Ke, J. M. Prahl, J. I. D. Alexander, R. F. Savinell, Journal of Power Sources 384 (2018) 295–302. https://doi.org/10.1016/j.jpowsour.2018.03.001

X. You, Q. Ye, P. Cheng, International Communications of Heat and Mass Transfer 75 (2016) 7–12. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.021

S. Maurya, P.T. Nguyen, Y. S. Kim, Q. Kang, R. Mukundan, Journal of Power Sources 404 (2018) 20–27. https://doi.org/10.1016/j.jpowsour.2018.09.093

R. Gundlapalli, S. Jayanti, Journal of Energy Storage 30 (2020) 101516. https://doi.org/10.1016/j.est.2020.101516

Y. Li, X. Zhang, J. Bao, M. Skyllas-Kazacos, Journal of Energy Storage 11 (2017) 191–199. https://doi.org/10.1016/j.est.2017.02.008

X. Wu, X. Yuan, Z. Wang, J. Liu, Y. Hu, Q. Deng, X. Yin, Q. Zhou, W. Zhou, Y. Wu, Journal of Solid State Electrochemistry 21 (2017) 429–435. https://doi.org/10.1007/s10008-016-3361-x

D.-J. Park, K.-S. Jeon, C.-H. Ryu, G.-J. Hwang, Journal of Industrial and Engineering Chemistry 45 (2017) 387–390. https://doi.org/10.1016/j.jiec.2016.10.007

M. M. Tomadakis, T. J. Robertson, Journal of Composite Materials 39 (2005) 163-168. https://doi.org/10.1177/0021998305046438

D. You, H. Zhang, J. Chen, Electrochimica Acta 54 (2009) 6827–6836. https://doi.org/10.1016/j.electacta.2009.06.086

B. W. Zhang, Y. Lei, B. F. Bai, A. Xu, T. S. Zhao, Applied Thermal Engineering 151 (2019) 495–505. https://doi.org/10.1016/j.applthermaleng.2019.02.037

J. T. Gostick, M. W. Fowler, M. D. Pritzker, M. A. Ioannidis, L. M. Behra, Journal of Power Sources 162 (2006) 228–238. https://doi.org/10.1016/j.jpowsour.2006.06.096

A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu, Journal of Applied Electrochemistry 41 (2011) 1137. https://doi.org/10.1007/s10800-011-0348-2

T. Jyothi Latha, S. Jayanti, Journal of Power Sources 248 (2014) 140146. https://doi.org/10.1016/j.jpowsour.2013.09.084

P. Leung, X. Li, C. Ponce de León, L. Berlouis, C. T. J. Low, F. C. Walsh, RSC Advances 2(27) (2012) 10125-10156. https://doi.org/10.1039/C2RA21342G

A. Tang, J. Bao, M. Skyllas-Kazacos, Journal of Power Sources 248 (2014) 154–162. https://doi.org/10.1016/j.jpowsour.2013.09.071

S. Kumar and S. Jayanthi, Journal of Power Sources 307 (2016) 782787. https://doi.org/10.1016/j.jpowsour.2016.01.048

R. M. Darling, M. L. Perry, Journal of The Electrochemical Society 161 (2014) A1381A1387. https://doi.org/10.1149/2.0941409jes

Published

17-03-2023 — Updated on 17-03-2023

How to Cite

Yadav, S., & Krishnamurthy, B. (2023). Modeling the velocity profiles in vanadium redox flow batteries-serpentine flow field: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(3), 505–519. https://doi.org/10.5599/jese.1610

Issue

Section

Batteries and supercapacitors

Most read articles by the same author(s)