Parametric modeling of microbial fuel cells
DOI:
https://doi.org/10.5599/jese.671Keywords:
Microbial fuel cell, hydrogen, bio-film, acetate, carbon dioxide, modelAbstract
Microbial fuel cells use bacteria to generate electrical energy and are used for lower power density applications. This paper studies the effect of operational parameters on the performance of a microbial fuel cell. The effect of length of the anode compartment, inlet acetate concentration, acetate flow rate, temperature, thickness of the membrane and bio-film conductivity on the performance of the fuel cell is modeled. The thickness of the membrane is found to play a very limiting role in affecting the performance of the fuel cell. However, the length of the anode compartment, acetate flow rate and bio-film conductivity are found to play a significant role in the performance of the fuel cell. Model results are compared with experimental data and found to compare well.
Downloads
References
C. Picoreanu, K. Scott, Water Research 41 (2007) 2921-2940.
A. K. Marcus, C. I. Torres, B. E. Rittmann, Biotechnology and Bioengineering 98 (2007) 1171-1182.
B.V. Merkey , D. L.Chopp, Bulletin of Mathematical Biology 74 (2012) 834-857.
R. Sedaqatvand, M. M. Mardanpoura, Bioresource Technology 146 (2013) 247-253.
N. Jayasinghe, R. Madhavan, BioTechnology Journal 10 (2014) 1350-1361.
R. P. Pinto, B. Srinivasan, M. F Maneul, B. Tattarskosky, Bioresource Technology 101 (2010) 5256-5265.
V. B. Oliviera, M. Simoes, L. F. Melo, A. M. F. R. Pinto, Energy 61 (2013) 463-471.
S. Cheng, B. Wang, Y. Wang, Bioresource Technology 147 (2013) 332-337.
Y. Zeng, Y. F. Choo, B. H. Kim, P. Wu, Journal of Power Sources 195 (2010) 79-89.
W. Cai, Hong Liu, Chemical Engineering Journal 333 (2018) 672-582.
M.M.Mardanpour, S.Yaghmaei, M.Kalantar, Journal of Power Sources 342 (2017) 1017-1031.
S. Ou, M. M. Mench, Journal of Power Sources 314 (2016) 49-57.
P. Sobieszuk, A. Jaraszewicz, L. Makowski, Journal of Power Sources 371 (2017) 178-187.
S. Yao, X. Y. Li, Electrochimica Acta 212 (2016) 201-211.
C. Xia, D. Zhang, W. Pedrycz, Y. Zhu, Y. Gao, Journal of Power Sources 373 (2018) 119-131.
S.Gadkari, S. Gu, J. Sadhukhan, Chemical Engineering Journal 343 (2018) 303-316.
A. Capadaglio, D. Cecconet, D. Molognoni, Processes 5 (4) (2017) 73-78.
B. Lorant, M.Loka , G. M.Tardy, Energy (IYCE), (2015) 1-7.
N. Malvankar, M. Tuominen, D. Lovely, Energy and Environmental Science 5 (2012) 5790-5796.
H. Richter, L. M. Tender, Energy and Environmental Science 2 (2009) 506-516.
C. I. Torres, A. K. Marcus, P. Parameswaran, B. E. Rittmann Environmental Science and Technology 42 (2008) 6593-6597.
Y. Liu, H. Kim, R. Franklin, D. R. Bond, Energy and Environmental Science 3 (2010) 1782-1788.
D. Pocaznoi, B. Erable, M.-L. Delia, A. Bergel, Energy and Environmental Science 5 (2012) 5287-5296.
S. Yao, L. He, B. Song, Y. Li, Electrochimica Acta 212 (2016) 201-211.
M. Behrera, P.S.Jana, M. M. Ghangrekar, Bioresource Technology 101 (2010) 1183-1189.
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.