Parametric modeling of microbial fuel cells

Authors

  • Amandeep Singh Department of Chemical Engineering, BITS Pilani, Hyderabad
  • Balaji Krishnamurthy Department of Chemical Engineering, BITS Pilani, Hyderabad

DOI:

https://doi.org/10.5599/jese.671

Keywords:

Microbial fuel cell, hydrogen, bio-film, acetate, carbon dioxide, model

Abstract

Microbial fuel cells use bacteria to generate electrical energy and are used for lower power density applications. This paper studies the effect of operational parameters on the performance of a microbial fuel cell. The effect of length of the anode compartment, inlet acetate concentration, acetate flow rate, temperature, thickness of the membrane and bio-film conductivity on the performance of the fuel cell is modeled. The thickness of the membrane is found to play a very limiting role in affecting the performance of the fuel cell. However, the length of the anode compartment, acetate flow rate and bio-film conductivity are found to play a significant role in the performance of the fuel cell. Model results are compared with experimental data and found to compare well.

Downloads

Download data is not yet available.

References

C. Picoreanu, K. Scott, Water Research 41 (2007) 2921-2940.

A. K. Marcus, C. I. Torres, B. E. Rittmann, Biotechnology and Bioengineering 98 (2007) 1171-1182.

B.V. Merkey , D. L.Chopp, Bulletin of Mathematical Biology 74 (2012) 834-857.

R. Sedaqatvand, M. M. Mardanpoura, Bioresource Technology 146 (2013) 247-253.

N. Jayasinghe, R. Madhavan, BioTechnology Journal 10 (2014) 1350-1361.

R. P. Pinto, B. Srinivasan, M. F Maneul, B. Tattarskosky, Bioresource Technology 101 (2010) 5256-5265.

V. B. Oliviera, M. Simoes, L. F. Melo, A. M. F. R. Pinto, Energy 61 (2013) 463-471.

S. Cheng, B. Wang, Y. Wang, Bioresource Technology 147 (2013) 332-337.

Y. Zeng, Y. F. Choo, B. H. Kim, P. Wu, Journal of Power Sources 195 (2010) 79-89.

W. Cai, Hong Liu, Chemical Engineering Journal 333 (2018) 672-582.

M.M.Mardanpour, S.Yaghmaei, M.Kalantar, Journal of Power Sources 342 (2017) 1017-1031.

S. Ou, M. M. Mench, Journal of Power Sources 314 (2016) 49-57.

P. Sobieszuk, A. Jaraszewicz, L. Makowski, Journal of Power Sources 371 (2017) 178-187.

S. Yao, X. Y. Li, Electrochimica Acta 212 (2016) 201-211.

C. Xia, D. Zhang, W. Pedrycz, Y. Zhu, Y. Gao, Journal of Power Sources 373 (2018) 119-131.

S.Gadkari, S. Gu, J. Sadhukhan, Chemical Engineering Journal 343 (2018) 303-316.

A. Capadaglio, D. Cecconet, D. Molognoni, Processes 5 (4) (2017) 73-78.

B. Lorant, M.Loka , G. M.Tardy, Energy (IYCE), (2015) 1-7.

N. Malvankar, M. Tuominen, D. Lovely, Energy and Environmental Science 5 (2012) 5790-5796.

H. Richter, L. M. Tender, Energy and Environmental Science 2 (2009) 506-516.

C. I. Torres, A. K. Marcus, P. Parameswaran, B. E. Rittmann Environmental Science and Technology 42 (2008) 6593-6597.

Y. Liu, H. Kim, R. Franklin, D. R. Bond, Energy and Environmental Science 3 (2010) 1782-1788.

D. Pocaznoi, B. Erable, M.-L. Delia, A. Bergel, Energy and Environmental Science 5 (2012) 5287-5296.

S. Yao, L. He, B. Song, Y. Li, Electrochimica Acta 212 (2016) 201-211.

M. Behrera, P.S.Jana, M. M. Ghangrekar, Bioresource Technology 101 (2010) 1183-1189.

Downloads

Published

23-07-2019

How to Cite

Singh, A., & Krishnamurthy, B. (2019). Parametric modeling of microbial fuel cells. Journal of Electrochemical Science and Engineering, 9(4), 311–323. https://doi.org/10.5599/jese.671

Issue

Section

Bioelectrochemistry & Fuel Cells

Most read articles by the same author(s)