Three-dimensional mathematical model to study effects of geometrical parameters on performance of solid oxide fuel cell

Original scientific paper

Authors

  • Vikalp Jha Department of Chemical Engineering, BITS Pilani, Hyderabad 500078, India https://orcid.org/0000-0001-8279-9626
  • Vikranth Kumar Surasani Department of Chemical Engineering, BITS Pilani, Hyderabad 500078, India https://orcid.org/0000-0003-4987-5695
  • Balaji Krishnamurthy Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad

DOI:

https://doi.org/10.5599/jese.1097

Keywords:

current density, channel width, cathode, cathode to anode thickness
Graphical Abstract

Abstract

A 3D mathematical model is developed to study effects of various geometrical parameters such as cathode to anode thickness ratio, rib width, and channel width under various flow conditions, on the performance of solid oxide fuel cell (SOFC). These parameters represent the cathode supported configuration of the solid oxide fuel cell. It is observed from simulation results that performance of SOFC fuel cell is increased at higher cathode to anode thickness. Simulation results also showed that for different volumetric flow rates, the current density and fuel cell performance decrease as rib width increases, what is due to higher contact resistance. It is also shown that by increasing the channel width, the fuel cell performance was increased due to increase in the reaction surface area. Simulation results are compared and validated with literature experimental data, showing well agreement.

Downloads

Download data is not yet available.

References

H. Yakabe, T. Ogiwara, M. Hishinuma, I. Yasuda, Journal of Power Sources 102(1-2) (2001) 144-154. https://doi.org/10.1016/S0378-7753(01)00792-3

L. P. Sun, M. Rieu, J. P. Viricelle, C. Pijolat, H. Zhao, International Journal of Hydrogen Energy 39(2) (2014) 1014-1022. https://doi.org/10.1016/j.ijhydene.2013.10.117

P. Chinda, Energy Procedia 34 (2013) 243-261. https://doi.org/10.1016/j.egypro.2013.06.753

S. Su, X. Gao, Q. Zhang, W. Kong, D. Chen, International Journal of Electrochemical Science 10 (2015) 2487-2503.

V. Zaccaria, D. Tucker, A. Traverso, Journal of Power Sources 327 (2016) 736-742. https://doi.org/10.1016/j.jpowsour.2016.01.027

V. Zaccaria, D. Tucker, A. Traverso, Journal of Power Sources 311 (2016) 175-181. https://doi.org/10.1016/j.jpowsour.2016.02.040

A. Cuneo, V. Zaccaria, D. Tucker, A. Traverso, Energy 141 (2017) 2277-2287. https://doi.org/10.1016/j.energy.2017.12.002

G. Giacoppo, O. Barbera, N. Briguglio, F. Cipitì, M. Ferraro, G. Brunaccini, E. Erdle, V. Antonucci, International Journal of Hydrogen Energy 42(46) (2017) 28022-28033. https://doi.org/10.1016/j.ijhydene.2017.09.063

M. Z. Khan, R.-H. Song, A. Hussain, S.-B. Lee, T.-H. Lim, J.-E. Hong, Journal of the European Ceramic Society 40(4) (2020) 1407-1417. https://doi.org/10.1016/j.jeurceramsoc.2019.11.017

M. Z. Khan, M. T. Mehran, R.-H. Song, J.-W. Lee, S.-B. Lee, T.-H. Lim, Journal of Power Sources 391 (2018) 94-105. https://doi.org/10.1016/j.jpowsour.2018.04.080

Q. Shen, L. Sun, B. Wang, International Journal of Electrochemical Science 14 (2019) 1698-1712. https://doi.org/10.20964/2019.02.11

M. Bianco, J. P. Ouweltjes, J. Van herle, International Journal of Hydrogen Energy 44(59) (2019) 31406-31422. https://doi.org/10.1016/j.ijhydene.2019.09.218.

S. Dwivedi, International Journal of Hydrogen Energy 45(44) (2020) 23988-24013. https://doi.org/10.1016/j.ijhydene.2019.11.234

M. Zhou, X. Wang, Y. Zhang, Q. Qiu, M. Liu, J. Liu, Solid State Ionics 343 (2019) 115127. https://doi.org/10.1016/j.ssi.2019.115127

G. Min, Y. J. Park, J. Hong, Energy Conversion and Management 209 (2020) 112614. https://doi.org/10.1016/j.enconman.2020.112614

Y. Wang, W. Jiang, M. Song, Y. Luo, S. T. -Tu, Journal of Power Sources 450 (2020) 227663. https://doi.org/10.1016/j.jpowsour.2019.227663

J. Hussain, R. Ali, M. N. Akhtar, M. H. Jaffery, I. Shakir, R. Raza, Current Applied Physics 20(5) (2020) 660-672. https://doi.org/10.1016/j.cap.2020.02.018

Batteries & Fuel Cells Module, User’s Guide, COMSOL Multiphysics Help, 2012.

Z. Lin, C. Song, S. Liu, Journal of Power Sources 183(1) (2008) 214-225. https://doi.org/10.1016/j.jpowsour.2008.04.054

Published

25-09-2021

How to Cite

Jha, V. ., Surasani, V. K. ., & Krishnamurthy, B. (2021). Three-dimensional mathematical model to study effects of geometrical parameters on performance of solid oxide fuel cell: Original scientific paper. Journal of Electrochemical Science and Engineering, 11(4), 291–304. https://doi.org/10.5599/jese.1097

Issue

Section

Bioelectrochemistry & Fuel Cells

Most read articles by the same author(s)