Three-dimensional mathematical model to study effects of geometrical parameters on performance of solid oxide fuel cell
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1097Keywords:
current density, channel width, cathode, cathode to anode thickness
Abstract
A 3D mathematical model is developed to study effects of various geometrical parameters such as cathode to anode thickness ratio, rib width, and channel width under various flow conditions, on the performance of solid oxide fuel cell (SOFC). These parameters represent the cathode supported configuration of the solid oxide fuel cell. It is observed from simulation results that performance of SOFC fuel cell is increased at higher cathode to anode thickness. Simulation results also showed that for different volumetric flow rates, the current density and fuel cell performance decrease as rib width increases, what is due to higher contact resistance. It is also shown that by increasing the channel width, the fuel cell performance was increased due to increase in the reaction surface area. Simulation results are compared and validated with literature experimental data, showing well agreement.
Downloads
References
H. Yakabe, T. Ogiwara, M. Hishinuma, I. Yasuda, Journal of Power Sources 102(1-2) (2001) 144-154. https://doi.org/10.1016/S0378-7753(01)00792-3
L. P. Sun, M. Rieu, J. P. Viricelle, C. Pijolat, H. Zhao, International Journal of Hydrogen Energy 39(2) (2014) 1014-1022. https://doi.org/10.1016/j.ijhydene.2013.10.117
P. Chinda, Energy Procedia 34 (2013) 243-261. https://doi.org/10.1016/j.egypro.2013.06.753
S. Su, X. Gao, Q. Zhang, W. Kong, D. Chen, International Journal of Electrochemical Science 10 (2015) 2487-2503.
V. Zaccaria, D. Tucker, A. Traverso, Journal of Power Sources 327 (2016) 736-742. https://doi.org/10.1016/j.jpowsour.2016.01.027
V. Zaccaria, D. Tucker, A. Traverso, Journal of Power Sources 311 (2016) 175-181. https://doi.org/10.1016/j.jpowsour.2016.02.040
A. Cuneo, V. Zaccaria, D. Tucker, A. Traverso, Energy 141 (2017) 2277-2287. https://doi.org/10.1016/j.energy.2017.12.002
G. Giacoppo, O. Barbera, N. Briguglio, F. Cipitì, M. Ferraro, G. Brunaccini, E. Erdle, V. Antonucci, International Journal of Hydrogen Energy 42(46) (2017) 28022-28033. https://doi.org/10.1016/j.ijhydene.2017.09.063
M. Z. Khan, R.-H. Song, A. Hussain, S.-B. Lee, T.-H. Lim, J.-E. Hong, Journal of the European Ceramic Society 40(4) (2020) 1407-1417. https://doi.org/10.1016/j.jeurceramsoc.2019.11.017
M. Z. Khan, M. T. Mehran, R.-H. Song, J.-W. Lee, S.-B. Lee, T.-H. Lim, Journal of Power Sources 391 (2018) 94-105. https://doi.org/10.1016/j.jpowsour.2018.04.080
Q. Shen, L. Sun, B. Wang, International Journal of Electrochemical Science 14 (2019) 1698-1712. https://doi.org/10.20964/2019.02.11
M. Bianco, J. P. Ouweltjes, J. Van herle, International Journal of Hydrogen Energy 44(59) (2019) 31406-31422. https://doi.org/10.1016/j.ijhydene.2019.09.218.
S. Dwivedi, International Journal of Hydrogen Energy 45(44) (2020) 23988-24013. https://doi.org/10.1016/j.ijhydene.2019.11.234
M. Zhou, X. Wang, Y. Zhang, Q. Qiu, M. Liu, J. Liu, Solid State Ionics 343 (2019) 115127. https://doi.org/10.1016/j.ssi.2019.115127
G. Min, Y. J. Park, J. Hong, Energy Conversion and Management 209 (2020) 112614. https://doi.org/10.1016/j.enconman.2020.112614
Y. Wang, W. Jiang, M. Song, Y. Luo, S. T. -Tu, Journal of Power Sources 450 (2020) 227663. https://doi.org/10.1016/j.jpowsour.2019.227663
J. Hussain, R. Ali, M. N. Akhtar, M. H. Jaffery, I. Shakir, R. Raza, Current Applied Physics 20(5) (2020) 660-672. https://doi.org/10.1016/j.cap.2020.02.018
Batteries & Fuel Cells Module, User’s Guide, COMSOL Multiphysics Help, 2012.
Z. Lin, C. Song, S. Liu, Journal of Power Sources 183(1) (2008) 214-225. https://doi.org/10.1016/j.jpowsour.2008.04.054
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.