Optimizing power output in direct formic acid fuel cells using palladium film mediation: experimental and DFT studies

Original scientific paper

Authors

  • Christogonus Akalezi Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria and Department of Chemistry School of Physical Sciences, Federal University of Technology, Owerri, Nigeria https://orcid.org/0000-0003-0983-7758
  • Arinze C. Maduabuchi Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria andf Department of Science Laboratory Technology, Federal University of Technology, Owerri, Nigeria https://orcid.org/0000-0001-7728-8880
  • Simeon Nwanonenyi Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria and Department of Polymer and Polymer Technology, Federal University of Technology, Owerri, Nigeria https://orcid.org/0000-0002-9392-7184
  • Emmanuel E. Oguzie Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria https://orcid.org/0000-0003-2708-9298

DOI:

https://doi.org/10.5599/jese.1955

Keywords:

Hydrogen production, formic acid decomposition, Pd catalyst, current peak, density functional theory
Graphical Abstract

Abstract

Low-temperature hydrogen production from environmentally friendly liquid fuels such as methanol, ethanol, and formic acid for miniature fuel cells used in powering portable electronic devices is attracting reasonable attention. In this study, we present the findings from the decomposition of formic acid and subsequent power generation within a microfluid fuel cell. The fuel cell system was engineered to incorporate a palladium membrane at the anode and a modified carbon Torray paper at the cathode. To assess fuel cell performance, we employed chronopotentiometry and cyclic voltammetric electro­chemical techniques. This simple fuel cell could achieve a current peak of 3.17 µW by utilizing 2.50 M HCOOH solution and 2.26 µW with 0.1 M solution, all at room temperature. Finally, to provide a deeper understanding of the reactivity and HCOOH decomposition pathways on various palladium surfaces, we conducted density functional theory (DFT) studies. Our DFT investigations revealed that the Pd(111) surface exhibited more negative adsorption energy compared to other surfaces, suggesting its propensity for a more isomeric crystal morphology. This research underscores the promising potential of low-temperature hydrogen production using safe liquid fuels in microfuel cell applications for portable electronic devices.

Downloads

Download data is not yet available.

References

N.Z. Muradov, T.N. Veziroğlu, "Green" path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies, International Journal of Hydrogen Energy 33(23) (2008) 6804-6839. https://doi.org/10.1016/j.ijhydene.2008.08.054

S. A. Boudghene, E. Traversa, Fuel cells, an alternative to standard sources of energy, Renewable and Sustainable Energy Reviews 6 (2002) 295-304. https://doi.org/10.1016/S1364-0321(01)00015-6

A. Dewan, S. U. Ay, M. N. Karim, H. Beyenal, Alternative power sources for remote sensors: A review, Journal of Power Sources 245 (2014) 129-143. https://doi.org/10.1016/j.jpowsour.2013.06.081

S. Mekhilef, R. Saidur, A. Safari, Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews 16 (2012) 981-989. https://doi.org/10.1016/j.rser.2011.09.020

J. Eppinger, K. -W. Huang, Formic Acid as a Hydrogen Energy Carrier, ACS Energy Letters 2 (2017) 188−195. https://doi.org/10.1021/acsenergylett.6b00574

Fuel Cell Handbook, EG & G Technical Services, U.S. Department of Energy, Morgantown, West Virginia, 2004. https://www.netl.doe.gov/sites/default/files/netl-file/FCHandbook7.pdf

G. Pandey, Biomass-based bio‑electro fuel cells based on carbon electrodes: an alternative source of renewable energy, SN Applied Sciences 1 (2019) 408. https://doi.org/10.1007/s42452-019-0409-4

S. Uhm, H. J. Lee, J. Lee, Understanding underlying processes in formic acid fuel cells, Physical Chemistry Chemical Physics 11 (2009) 9326-9336. https://doi.org/10.1039/B909525J

N. R. Joshi, Development in Direct Methanol - Oxygen Fuel Cell (DMFC), IOSR Journal of Applied Chemistry (IOSR-JAC) 7(9) (2014) 24-26. https://doi.org/10.9790/5736-07922426

P. Joghee, J. N. Malik, S. Pylypenko, R. O’Hayre, A review on direct methanol fuel cells-In the perspective of energy and sustainability, MRS Energy & Sustainability 2 (2015). https://doi.org/10.1557/mre.2015.4

K. Müller, K. Brooks, T. Autrey, Hydrogen Storage in Formic Acid: A Comparison of Process Options, Energy & Fuels 31 (2017) 12603-12611. https://doi.org/10.1021/acs.energyfuels.7b02997

S. Fukuzumi, Production of Liquid Solar Fuels and Their Use in Fuel Cells, Joule 1 (2017) 689-738. https://doi.org/10.1016/j.joule.2017.07.007

F. Sanchez, D. Motta, A. Roldan, C. Hammond, A. Villa, N. Dimitratos, Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies,Topics in Catalysis 61 (2018) 254-266. https://doi.org/10.1007/s11244-018-0894-5

D. Mellmann, P. Sponholz, H. Junge, M. Beller, Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release, Chemical Society Reviews 45 (2016) 3954-3988. https://doi.org/10.1039/C5CS00618J

S. Fukuzumi, T. Suenobu, Hydrogen storage, and evolution catalyzed by metal hydride complexes, Dalton Transactions 42 (2013) 18-28. https://doi.org/10.1039/C2DT31823G

E. Madrid, C. Harabajiu, R.S. Hill, K. Black, L. Torrente-Murciano, A. J. Dickinson, P. J. Fletcher, K. I. Ozoemena, A. K. Ipadeola, E. Oguzie, C. O. Akalezi, F. Marken, Indirect Formic Acid Fuel Cell Based on a Palladium or Palladium-Alloy Film Separating the Fuel Reaction and Electricity Generation, ChemElectroChem 8 (2021) 378-385. https://doi.org/10.1002/celc.202001570

A. K. Singh, S. Singh, A. Kumar, Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system, Catalysis Science & Technology 6 (2016) 12-40. https://doi.org/10.1039/C5CY01276G

B.Seger, G. Q. Lu, L. Wang, Electrical power and hydrogen production from a photo-fuel cell using formic acid and other single-carbon organics, Journal of Materials Chemistry 22 (2012) 10709-10715. https://doi.org/10.1039/C2JM16635F

W. Güther, W. Vielstich, Investigation on the Electrocatalytic Dehydrogenation of CHO-Compounds in acidic media via a palladium membrane, Electrochimica Acta 27(7) (1982) 811-816. https://doi.org/10.1016/0013-4686(82)80201-6

S.-W. Ting, C. Hu, J.K. Pulleri, K-Y. Chan, Heterogeneous Catalytic Generation of Hydrogen from Formic Acid under Pressurized Aqueous Conditions, Industrial & Engineering Chemistry Research 51 (2012) 4861−4867. https://doi.org/10.1021/ie2030079

N. He, Z. H. Li, Palladium-atom catalyzed formic acid decomposition and the switch of reaction mechanism with temperature, Physical Chemistry Chemical Physics 18 (2016) 10005-10017. https://doi.org/10.1039/C6CP00186F

M. Rafiee, H. Bashiri, Dynamic Monte Carlo simulations of the reaction mechanism of hydrogen production from formic acid on Ni (100), Applied Surface Science 475 (2019) 720-728. https://doi.org/10.1016/j.apsusc.2018.12.294

R. Zhang, M. Yang, M. Peng, L. Ling, B. Wang, Understanding the role of Pd:Cu ratio, surface and electronic structures in Pd-Cu alloy material applied in direct formic acid fuel cells, Applied Surface Science 465 (2019) 730-739. https://doi.org/10.1016/j.apsusc.2018.09.196

A. Plauck, E. E. Stangland, J. A. Dumesic, M. Mavrikakis, Active Sites and Mechanisms for H2O2 Decomposition over Pd Catalysts, Proceedings of the National Academy of Sciences (PNAS) 113(14) (2016) E1973-E1982. http://www.pnas.org/cgi/doi/10.1073/pnas.1602172113

M. Rezakazemi, T. A. Kurniawan, A. B. Albadarin, S. Shirazian, Molecular Modeling Investigation on Mechanism of Phenol Removal from Aqueous Media by Single- and Multi-Walled Carbon Nanotubes, Journal of Molecular Liquids 271 (2018) 24-30. https://doi.org/10.1016/j.molliq.2018.08.132

M. J. Harrison, D. P. Woodruff, J. Robinson, Density Functional Theory Investigation of the Structure of SO2 and SO3 on Cu(111) and Ni(111), Surface Science 600(9) (2006) 1827-1836. https://doi.org/10.1016/j.susc.2006.02.020

H. Sun, The COMPASS Force Field: Parameterization and Validation for Phosphazenes, Computational and Theoretical Polymer Science 8(1-2) (1998) 229-246. https://doi.org/10.1016/S1089-3156(98)00042-7

R. Zhang, H. Liu, B. Wang, L. Ling, Insights into the preference of CO2 formation from HCOOH decomposition on Pd surface: A theoretical study, The Journal of Physical Chemistry C 116 (2012) 22266-22280. https://doi.org/10.1021/jp211900z

Y. Zhu, Z. Khan, R. I. Masel, The behavior of palladium catalysts in direct formic acid fuel cells, Journal of Power Sources 139 (2005) 15-20. https://doi.org/10.1016/j.jpowsour.2004.06.054

C. Rice, S. Ha, R. Masel, A.I. Wieckowski, Catalysts for direct formic acid fuel cells, Journal of Power Sources 115 (2003) 229-235. https://doi.org/10.1016/S0378-7753(03)00026-0

Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Kinetics and mechanism of the electrooxidation of formic acid - Spectroelectrochemical studies in a flow cell, Angewandte Chemie-International Edition 45 (2006) 981-985. https://doi.org/10.1002/anie.200502172

C. Hu, S.-W. Ting, K.-Y. Chang, W. Huang Reaction pathways derived from DFT for understanding catalytic decomposition of formic acid into hydrogen on noble metals, International Journal of Hydrogen Energy 37(10) (2012) 15956-15865. https://doi.org/10.1016/j.ijhydene.2012.08.035

Y. Wang, Y. Qi, D. Zhang, New mechanism of the direct pathway for formic acid oxidation on Pd(111), Computational and Theoretical Chemistry 1049 (2014) 51-54. https://doi.org/10.1016/j.comptc.2014.09.020

J. S. Yoo, F. Abild-Pedersen, J. K. Nørskov, F. Studt, Theoretical analysis of transition-metal catalysts for formic acid decomposition, ACS Catalysis 4 (2014) 1226-1233. https://doi.org/10.1021/cs400664z

Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Kinetic isotope effects in complex reaction networks: Formic acid electro-oxidation, ChemPhysChem 8 (2007) 380-385. https://doi.org/10.1002/cphc.200600520

F. Barbir, Fuel Cells - Exploratory Fuel Cells | Regenerative Fuel Cells, in Encyclopedia of Electrochemical Power Sources, Jürgen Garche, Ed., Elsevier B.V. (2009), 224-237. https://doi.org/10.1016/b978-044452745-5.00288-4

K. H. Kim, J.K. JYu, HS. Lee JH. Choi, SY. Noh, S.K. Yoon, C. S. Lee, T.S. Hwang, YW. Rhee, Preparation of Pt-Pd catalysts for direct formic acid fuel cell and their characteristics, Korean Journal of Chemical Engineering 24 (2007) 518-521. https://doi.org/10.1007/s11814-007-0091-x

K. Jiang, H-X. Zhang, S. Zou, W-H. Cai, Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications, Physical Chemistry Chemical Physics 16 (2014) 20360-20376. https://doi.org/10.1039/C4CP03151B

X. Yang, P. Pachfule, Y. Chen, N. Tsumori, Q. Xu, Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst, Chemical Communications 52(22) (2016) 4171−4174. https://doi.org/10.1039/C5CC10311H

A. Capon, R. Parsons. Oxidation of Formic-Acid at Noble-Metal Electrodes Part .3. Intermediates and Mechanism on Platinum-Electrodes, Journal of Electroanalytical and Interfacial Chemistry 45 (1973) 205-231. https://doi.org/10.1016/S0022-0728(73)80158-5

X. Zhang, Z. Dai, Q. Chen, J. A. Tang, DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes, Physica Scripta 89(6) (2014) 065803. https://doi.org/10.1088/0031-8949/89/6/065803

Downloads

Published

25-08-2024 — Updated on 25-08-2024

How to Cite

Akalezi, C., Maduabuchi, A. C., Nwanonenyi, S., & Oguzie, E. E. (2024). Optimizing power output in direct formic acid fuel cells using palladium film mediation: experimental and DFT studies: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(5), 547–558. https://doi.org/10.5599/jese.1955

Issue

Section

Fuel cells

Funding data