Single microfluidic fuel cell with three fuels – formic acid, glucose and microbes: A comparative performance investigation

Original scientific paper

Authors

  • Jayapiriya Umarani Sivakumar Department of Electrical and Electronics Engineering, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India
  • Lanka Tata Rao Department of Mechanical Engineering, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India and MEMS, Microfluidics and Nanoelectronics Lab, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India
  • Prakash Rewatkar Department of Electrical and Electronics Engineering, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India and MEMS, Microfluidics and Nanoelectronics Lab, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India
  • Haroon Khan School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea
  • Satish Kumar Dubey Department of Mechanical Engineering, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India and MEMS, Microfluidics and Nanoelectronics Lab, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India
  • Arshad Javed Department of Mechanical Engineering, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India and MEMS, Microfluidics and Nanoelectronics Lab, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India
  • Gyu Man Kim School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South
  • Sanket Goel Department of Electrical and Electronics Engineering, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India and MEMS, Microfluidics and Nanoelectronics Lab, BITS Pilani, Hyderabad Campus, Hyderabad, 500078, India http://orcid.org/0000-0002-9739-4178

DOI:

https://doi.org/10.5599/jese.1092

Keywords:

electrocatalysis, biocatalysis, chemical fuel, biofuel, portable devices

Abstract

The development of microfluidic and nanofluidic devices is gaining remarkable attention due to the emphasis put on miniaturization of conventional energy conversion and storage processes. A microfluidic fuel cell can integrate flow of electrolytes, electrode-electrolyte interactions, and power generation in a microfluidic channel. Such microfluidic fuel cells can be categorized on the basis of electrolytes and catalysts used for power generation. In this work, for the first time, a single microfluidic fuel cell was harnessed by using different fuels like glucose, microbes and formic acid. Herein, multi-walled carbon nanotubes (MWCNT) acted as electrode material, and performance investigations were carried out separately on the same microfluidic device for three different types of fuel cells (formic acid, microbial and enzymatic). The fabricated miniaturized microfluidic device was successfully used to harvest energy in microwatts from formic acid, microbes and glucose, without any metallic catalyst. The developed microfluidic fuel cells can maintain stable open-circuit voltage, which can be used for energizing various low-power portable devices or applications.

Downloads

Download data is not yet available.

References

M. Safdar, J. Jänis, S. Sánchez, Lab on a Chip 16(15) (2016) 2754-2758. https://doi.org/10-.1039¬/C6LC90070D

S.O. Ganiyu, C.A. Martínez-Huitle, Current Opinion in Electrochemistry 22 (2020) 211-220. https://doi.org/10.1016/j.coelec.2020.07.007

E. Kjeang, N. Djilali, D. Sinton, Journal of Power Sources 186(2) (2009) 353-369. https://doi.org/10.1016/j.jpowsour.2008.10.011

S. Goel, Applied Materials Today 11 (2018) 270-279. https://doi.org/10.1016/j.apmt.2018.-03.005

P. Rewatkar, S. Goel, Journal of Electrochemical Science and Engineering 10(1) (2020) 49-54. https://doi.org/10.5599/jese.687

M. Rasmussen, S. Abdellaoui, S.D. Minteer, Biosensors and Bioelectronics 76 (2016) 91-102. https://doi.org/10.1016/j.bios.2015.06.029

G. Slaughter, T. Kulkarni, Journal of Biochips and Tissue Chips 5(1) (2015) 1000111. https://doi.org/10.4172/2153-0777.1000110

R. Veerubhotla, A. Bandopadhyay, D. Das, S. Chakraborty, Lab on a Chip 15(12) (2015) 2580-2583. https://doi.org/10.1039/C5LC00211G

M. Bandapati, S. Goel, B. Krishnamurthy, Journal of Electrochemical Science and Engineering 10(4) (2020) 385-398. https://doi.org/10.5599/jese.807

Y. Yang, D. Ye, J. Li, X. Zhu, Q. Liao, B. Zhang, Journal of Power Sources 324 (2016) 113-125. https://doi.org/10.1016/j.jpowsour.2016.05.078

A.N. Ghadge, M. Sreemannarayana, N. Duteanu, M.M. Ghangrekar, Journal of Electrochemical Science and Engineering 4(4) (2014) 315-326. https://doi.org/10.5599/-jese.2014.0047

K. Ponmani, S. Kiruthika, B. Muthukumaran, Journal of Electrochemical Science and Technology 6(3) (2015) 95-105. https://doi.org/10.5229/JECST.2015.6.3.95

Y. Zhou, X. Zhu, B. Zhang, D.-D. Ye, R. Chen, Q. Liao, International Journal of Hydrogen Energy 45(53) (2020) 29235-29245. https://doi.org/10.1016/j.ijhydene.2020.07.169

M. Bhaiyya, P. Rewatkar, M. Salve, P.K. Pattnaik, S. Goel, IEEE Transactions of NanoBioscience 20(1) (2020) 79-85. https://doi.org/10.1109/tnb.2020.3036642

S. Dudala, S.K. Dubey, S. Goel, IEEE Transactions of Biomedical Circuits and Systems 13(6) (2019) 1518-1524. https://doi.org/10.1109/TBCAS.2019.2939658

S.A. Mousavi Shaegh, N.-T. Nguyen, S.H. Chan, International Journal of Hydrogen Energy 36(9) (2011) 5675-5694. https://doi.org/10.1016/j.ijhydene.2011.01.063

R. Banerjee, S.P.J. Kumar, N. Mehendale, S. Sevda, V.K. Garlapati, Renewable and Sustainable Energy Reviews 101 (2019) 548-558. https://doi.org/10.1016/j.rser.2018.11¬.040

E.R. Choban, L.J. Markoski, A. Wieckowski, P.J.A. Kenis, Journal of Power Sources 128(1) (2004) 54-60. https://doi.org/10.1016/j.jpowsour.2003.11.052

J. wook Lee, E. Kjeang, Biomicrofluidics 4(4) (2010) 041301. https://doi.org/10.1063/1.3515523

J. U.S., P. Rewatkar, S. Goel, International Journal of Hydrogen Energy 46(4) (2020) 3183-3192. https://doi.org/10.1016/j.ijhydene.2020.06.133

L. Tata Rao, P. Rewatkar, S.K. Dubey, A. Javed, S. Goel, International Journal of Energy Research 44(5) (2020) 3893-3904. https://doi.org/10.1002/er.5188

D. Nath, P. Sai Kiran, P. Rewatkar, B. Krishnamurthy, P. Sankar Ganesh, S. Goel, IEEE Transactions of NanoBioscience 18(3) (2019) 510-515. https://doi.org/10.1109/TNB.2019.-2919930

L. Renaud, D. Selloum, S. Tingry, Microfluidics and Nanofluidics 18(5-6) (2015) 1407-1416. https://doi.org/10.1007/s10404-014-1539-z

S. Srikanth, S. Dudala, S. Raut, S.K. Dubey, I. Ishii, A. Javed, S. Goel, Journal of Micromechanics and Microengineering 30(9) (2020) 095003. https://doi.org/10.1088/1361-6439/ab92ea

S. Dudala, L.T. Rao, S.K. Dubey, A. Javed, S. Goel, Materials Today: Proceedings 28 (Part 2) (2019) 804-807. https://doi.org/10.1016/j.matpr.2019.12.302

J. Wei, P. Liang, X. Huang, Bioresource Technology 102(20) (2011) 9335-9344. https://doi.org/10.1016/j.biortech.2011.07.019

D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, Bioresource Technology 101(6) (2010) 1533-1543. https://doi.org/10.1016/j.biortech.2009.10.017

A.A. Babadi, S. Bagheri, S.B.A. Hamid, Biosensensors and Bioelectronics 79 (2016) 850–860. https://doi.org/10.1016/j.bios.2016.01.016

P. Rewatkar, A. Kothuru, S. Goel, IEEE Transactions of Electron Devices 67(4) (2020) 1832-1838. https://doi.org/10.1109/ted.2020.2971480

L.T. Rao, S.K. Dubey, A. Javed, S. Goel, Journal of Electrochemical Energy Conversion and Storage 17(3) (2020) 031015. https://doi.org/10.1115/1.4045979

P. Rewatkar, J. U. S, S. Goel, ACS Sustainable Chemistry & Engineering 8(32) (2020) 12313-12320. https://doi.org/10.1021/acssuschemeng.0c04752

D. Nath, S. Kallepalli, L.T. Rao, S.K. Dubey, A. Javed, S. Goel, International Journal of Hydrogen Energy 46(4) (2020) 3230-3239. https://doi.org/10.1016/j.ijhydene.2020.04.294

H. Khan, C.M. Kim, S.Y. Kim, S. Goel, P.K. Dwivedi, A. Sharma, Y.H. Kim, G.M. Kim, International Journal of Precison Engineering and Manufacturing-Green Technology 6(3) (2019) 511-520. https://doi.org/10.1007/s40684-019-00056-x

W.E. Farneth, M.B. D’Amore, Journal of Electroanalytical Chemistry 581(2) (2005) 197-205. https://doi.org/10.1016/j.jelechem.2005.03.018

U.S. Jayapiriya, S. Goel, Applied Nanoscience 10(11) (2020) 4315-4324. https://doi.org/10.-1007/¬s13204-020-01543-3

T.D. Dang, Y.H. Kim, J.H. Choi, G.-M. Kim, Journal of Micromechanics and Microengineering 22(1) (2012) 015017. https://doi.org/10.1088/0960-1317/22/1/015017

L.T. Rao, S.K. Dubey, A. Javed, S. Goel, Sustainable Energy Technology and Assessments 45 (2021) 101176. https://doi.org/10.1016/J.SETA.2021.101176

D. Panjiara, H. Pramanik, Journal of Electrochemical and Technology 12(1) (2021) 38-57. https://doi.org/10.33961/jecst.2020.01102

Y. Wu, S. Wang, D. Liang, N. Li, Bioresource Technology 298 (2020) 122403. https://doi.org/10.1016/j.biortech.2019.122403

S. Zhu, H. Li, W. Niu, G. Xu, Biosensensors and Bioelectronics 25(4) (2009) 940-943. https://doi.org/10.1016/j.bios.2009.08.022

J.U.S, S. Goel, Sustainable Energy Technology and Assessments 42 (2020) 100811. https://doi.org/10.1016/j.seta.2020.100811

M. Bandapati, B. Krishnamurthy, S. Goel, IEEE Transactions of NanoBioscience 18(2) (2019) 170-175. https://doi.org/10.1109/tnb.2019.2896207

P. Rewatkar, S. Goel, IEEE Transactions of NanoBioscience 17(4) (2018) 374-379. https://doi.org/10.1109/TNB.2018.2857406

M.H. Sun, G. Velve Casquillas, S.S. Guo, J. Shi, H. Ji, Q. Ouyang, Y. Chen, Microelectronic Engineering 84(5-8) (2007) 1182-1185. https://doi.org/10.1016/j.mee.2007.01.175

A. Zebda, L. Renaud, M. Cretin, C. Innocent, F. Pichot, R. Ferrigno, S. Tingry, Journal of Power Sources 193(2) (2009) 602-606. https://doi.org/10.1016/j.jpowsour.2009.04.066

Downloads

Published

05-10-2021

Issue

Section

Bioelectrochemistry & Fuel Cells

How to Cite

Single microfluidic fuel cell with three fuels – formic acid, glucose and microbes: A comparative performance investigation: Original scientific paper. (2021). Journal of Electrochemical Science and Engineering, 11(4), 305-316. https://doi.org/10.5599/jese.1092

Similar Articles

1-10 of 327

You may also start an advanced similarity search for this article.