Elucidating mechanistic background of the origin and rates of peroxide formation in low temperature proton exchange fuel cells

Original scientific paper


  • Ambrož Kregar University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana, 1000, Slovenia and University of Ljubljana, Faculty of Education, Kardeljeva ploščad 16, Ljubljana, 1000, Slovenia https://orcid.org/0000-0003-1249-7408
  • Tomaž Katrašnik University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana, 1000, Slovenia https://orcid.org/0000-0001-6954-4936




Fuel cell, membrane, modelling, degradation, hydrogen peroxide
Graphical Abstract


Degradation of electrode-membrane assembly of the low-temperature hydrogen fuel cells represents one of the main obstacles in wider adoption of these clean and efficient electrochemical sources of electrical energy. Chemical degradation of proton exchange membrane is initiated by hydrogen peroxide formation, which forms in the fuel cell as a by-product to water in oxygen reduction reaction and decomposes to reactive radical species, damaging to the membrane chemical structure. Depending on the operating conditions of the fuel cell, the source of hydrogen peroxide can be either cathode, anode, or, as we argue in the paper, also the Pt particles in the membrane, which originate from the cathode catalyst dissolution, diffusion into the membrane and redeposition of Pt ions inside the membrane. In the paper we propose a mathematical model of intertwined physical processes in membrane and catalyst layer, aimed at unifying the description of hydrogen peroxide formation throughout entire membrane-electrode assembly at any fuel cell operating conditions. The model results, compared to experimental data, indicate that Pt particles inside the membrane can indeed be an important source of hydrogen peroxide in aged fuel cells. For a fresh fuel cell, numerical simulation using proposed model show that hydrogen peroxide can be formed at either cathode or anode, depending on the fuel cell operating condition, but with anode production being more prominent in standard fuel cell operating conditions.


Download data is not yet available.


M. Javaid Zaidi, T. Matsuura, Eds., Springer US, Boston, USA, 2008, p. 1-6. https://doi.org/10.1007/978-0-387-73532-0_1

T. Jahnke, G. Futter, A. Latz, T. Malkow, G. Papakonstantinou, G. Tsotridis, P. Schott, M. Gérard, M. Quinaud, M. Quiroga, A. A. Franco, K. Malek, F. Calle-Vallejo, R. Ferreira de Morais, T. Kerber, P. Sautet, D. Loffreda, S. Strahl, M. Serra, P. Polverino, C. Pianese, M. Mayur, W. G. Bessler, C. Kompis, Performance and degradation of Proton Exchange Membrane Fuel Cells: State of the art in modeling from atomistic to system scale, Journal of Power Sources 304 (2016) 207-233. https://doi.org/10.1016/j.jpowsour.2015.11.041

A. Kregar, M. Gatalo, N. Maselj, N. Hodnik, T. Katrašnik, Temperature dependent model of carbon supported platinum fuel cell catalyst degradation, Journal of Power Sources 514 (2021) 230542. https://doi.org/10.1016/j.jpowsour.2021.230542

A. Kregar, G. Tavčar, A. Kravos, T. Katrašnik, EFCF 2019 - Low-Temperature Fuel Cells, Electrolysers and H2 Processing ,Fundamentals and Engineering Design Predictive model for performance and platinum degradation simulation of high temperature PEM fuel cells in transient operating conditions, Lucerne, Switzerland, 2019, p. 1817-1822. https://past.efcf.com/index.php-id=proceedings_isbn.html

A. Kregar, A. Kravos, T. Katrašnik, Methodology for Evaluation of Contributions of Ostwald Ripening and Particle Agglomeration to Growth of Catalyst Particles in PEM Fuel Cells, Fuel Cells 20 (2020) 487-498. https://doi.org/10.1002/fuce.201900208

P. Frühwirt, A. Kregar, J.T. Törring, T. Katrašnik, G. Gescheidt, Holistic approach to chemical degradation of Nafion membranes in fuel cells: modelling and predictions, Physical Chemistry Chemical Physics 22 (2020) 5647-5666. https://doi.org/10.1039/C9CP04986J

A. Kregar, P. Frühwirt, D. Ritzberger, S. Jakubek, T. Katrašnik, G. Gescheidt, Sensitivity based order reduction of a chemical membrane degradation model for low-temperature proton exchange membrane fuel cells, Energies 13(21) (2020) 5611. https://doi.org/10.3390/en13215611.

V. A. Sethuraman, J. W. Weidner, A. T. Haug, M. Pemberton, L. V. Protsailo, Importance of catalyst stability vis-à-vis hydrogen peroxide formation rates in PEM fuel cell electrodes, Electrochimica Acta 54 (2009) 5571-5582. https://doi.org/10.1016/j.electacta.2009.04.062

V. A. Sethuraman, J. W. Weidner, A. T. Haug, S. Motupally, L. V. Protsailo, Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode, Journal of The Electrochemical Society 155 (2008) B50. https://doi.org/10.1149/1.2801980

A. Ohma, S. Yamamoto, K. Shinohara, Membrane degradation mechanism during open-circuit voltage hold test, Journal of Power Sources 182 (2008) 39-47. https://doi.org/10.1016/j.jpowsour.2008.03.078

S. F. Burlatsky, M. Gummalla, V. V. Atrazhev, D. V. Dmitriev, N.Y. Kuzminyh, N. S. Erikhman, The Dynamics of Platinum Precipitation in an Ion Exchange Membrane, Journal of The Electrochemical Society 158 (2011) B322. https://doi.org/10.1149/1.3532956

M. Holber, P. Johansson, P. Jacobsson, Raman spectroscopy of an aged low temperature polymer electrolyte fuel cell membrane, Fuel Cells 11 (2011) 459-464. https://doi.org/10.1002/fuce.201100006

H. Ericson, T. Kallio, T. Lehtinen, B. Mattsson, G. Sundholm, F. Sundholm, P. Jacobsson, Confocal Raman Spectroscopic Investigations of Fuel Cell Tested Sulfonated Styrene Grafted Poly(vinylidene fluoride) Membranes, Journal of The Electrochemical Society 149 (2002) A206. https://doi.org/10.1149/1.1431964

V. A. Sethuraman, J. W. Weidner, A. T. Haug, S. Motupally, L. V. Protsailo, Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode, Journal of The Electrochemical Society 155 (2008) B50. https://doi.org/10.1149/1.2801980

C. Chen, T. F. Fuller, Modeling of H2O2 formation in PEMFCs, Electrochimica Acta 54 (2009) 3984-3995. https://doi.org/10.1016/j.electacta.2009.02.021

K. H. Wong, E. Kjeang, Macroscopic In-Situ Modeling of Chemical Membrane Degradation in Polymer Electrolyte Fuel Cells, Journal of The Electrochemical Society 161 (2014) F823-F832. https://doi.org/10.1149/2.0031409jes

K .H. Wong, E. Kjeang, Mitigation of Chemical Membrane Degradation in Fuel Cells: Understanding the Effect of Cell Voltage and Iron Ion Redox Cycle, ChemSusChem 8 (2015) 1072-1082 https://doi.org/10.1002/cssc.201402957

R. Singh, P.C. Sui, K. H. Wong, E. Kjeang, S. Knights, N. Djilali, Modeling the Effect of Chemical Membrane Degradation on PEMFC Performance, Journal of The Electrochemical Society 165 (2018) F3328-F3336. https://doi.org/10.1149/2.0351806jes

G. A. Futter, A. Latz, T. Jahnke, Physical modeling of chemical membrane degradation in polymer electrolyte membrane fuel cells: Influence of pressure, relative humidity and cell voltage, Journal of Power Sources 410–411 (2019) 78-90. https://doi.org/10.1016/j.jpowsour.2018.10.085

B. Tjaden, D.J.L. Brett, P.R. Shearing, Tortuosity in electrochemical devices: a review of calculation approaches, International Materials Reviews 63 (2018) 47-67. https://doi.org/10.1080/09506608.2016.1249995

M. Eikerling, A. Kornyshev, Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells, Journal of Electroanalytical Chemistry 475 (1999) 107-123. https://doi.org/10.1016/S0022-0728(99)00335-6

W. G. Pell, A. Zolfaghari, B. E. Conway, Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surface-oxide film, Journal of Electroanalytical Chemistry 532 (2002) 13-23. https://doi.org/10.1016/S0022-0728(02)00676-9

Y. Garsany, J. Ge, J. St-Pierre, R. Rocheleau, K. E. Swider-Lyons, Analytical Procedure for Accurate Comparison of Rotating Disk Electrode Results for the Oxygen Reduction Activity of Pt/C, Journal of The Electrochemical Society 161 (2014) F628-F640. https://doi.org/10.1149/2.036405jes

P. J. Ferreira, G. J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H. A. Gasteiger, Instability of Pt∕C Electrocatalysts in Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society 152 (2005) A2256. https://doi.org/10.1149/1.2050347

C. Chan, N. Zamel, X. Li, J. Shen, Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells, Electrochimica Acta 65 (2012) 13-21. https://doi.org/10.1016/j.electacta.2011.12.110

W. Bi, G. E. Gray, T. F. Fuller, PEM Fuel Cell Pt∕C Dissolution and Deposition in Nafion Electrolyte, Electrochemical Solid-State Letters 10 (2007) B101. https://doi.org/10.1149/1.2712796

R. F. Mann, J. C. Amphlett, B. A. Peppley, C. P. Thurgood, Henry’s Law and the solubilities of reactant gases in the modelling of PEM fuel cells, Journal of Power Sources 161 (2006) 768-774. https://doi.org/10.1016/j.jpowsour.2006.05.054

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A. Pietro Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G.A. Price, G.-L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger, J. V. de Miranda Cardoso, J. Reimer, J. Harrington, J. L. C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura, T.R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko, Y. Vázquez-Baeza, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature Methods 17 (2020) 261-272 https://doi.org/10.1038/s41592-019-0686-2

A.-S. Feiner, A.J. McEvoy, The Nernst Equation, Journal of Chemical Education 71 (1994) 493. https://doi.org/10.1021/ed071p493



20-07-2023 — Updated on 19-07-2023

How to Cite

Kregar, A., & Katrašnik, T. (2023). Elucidating mechanistic background of the origin and rates of peroxide formation in low temperature proton exchange fuel cells: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(5), 753–770. https://doi.org/10.5599/jese.1659



8th RSE SEE & 9th Kurt Schwabe symposium Special Issue

Funding data