Role of the newly synthesized brightener in modification of surface properties of Zn-Ni alloy electrodeposited on steel substrate

  • Jyoti S. Kavirajwar Department of Chemistry, The Oxford College of Engineering, Bangalore-560068, Karnataka
  • Basavanna Shivarudraiah Department of Chemistry, BTL Institute of Technology & Management, Bangalore-560099, Karnataka
  • Yanjerappa Arthoba Nayaka Department of Chemistry, Kuvempu University, Shankaraghatta, Shimoga-577451, Karnataka
Keywords: Nucleation, electrocrystallization, electrodeposition, zinc-nickel, Schariffker and Hills model

Abstract

In the present study, a new brightener was synthesized by condensation of salicylaldehyde and cysteine hydrochloride (SC). To examine the influence of SC on the nucleation mechanism of Zn-Ni alloy, electrodeposition, cyclic voltammetric and chronoamperometric studies were carried out. The model of Schariffker and Hills was used to analyze current transients which explained the electrocrystallization process of Zn-Ni alloy. It is revealed that Zn-Ni electrocrystallization process in presence of SC is regulated by instantaneous nucleation mechanism. The corrosion studies were done for the bright and dull zinc-nickel alloy coatings in 3.5 wt.% NaCl solution, using potentiodynamic polarization and electro­chemical impedance spectroscopic techniques. The phase structure, surface morphology and brightness of the deposit were characterized by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and reflectance studies. These studies revealed the role of SC in producing a bright Zn-Ni alloy coating on mild steel substrate and also showed its improved corrosion resistant nature.

Downloads

Download data is not yet available.

References

S. Rashmi, L. Elias, A. C. Hegde, Engineering Science & Technology 20 (2017) 1227-1232. https://doi.org/10.1016/j.jestch.2016.10.005

S. B. Ramesh, K.U. Bhat, A.C. Hegde, Analytical& Bioanalytical Electrochemistry 3 (2011) 302-315.

S. Basavanna, Y. A. Naik, Journal of Applied Electrochemistry 39 (2009) 1975-1982. https://doi.org/10.1007/s10800-009-9907-1

Z. Feng, Q. Li, J. Zhang, P. Yang, Journal of the Electrochemical Society 162 (2015) D412-D422. http://jes.ecsdl.org/content/162/9/D412.full

A. Brenner, Electrodeposition of alloys, principles and practice; Academic press, New York 1 (1963) E-Book ISBN: 9781483223117.

C. A. M. Dutra, J. W. J. Silva, R. Z. Nakazato, Materials Sciences and Applications 4 (2013) 644-648. https://file.scirp.org/Html/9-7701149_38134.htm

M. J. Rahman, S.R. Sen, M. Moniruzzaman, Journal of Mechanical Engineering 40 (2009) 9-14. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.2785&rep=rep1&type=pdf

Y. A. Naik, T.V. Venkatesha, Bulletin of Material Science 28 (2005) 495-501. https://doi.org/10.1007/BF02711243

S. Basavanna, Y. A. Naik, Journal of Applied Electrochemistry 41 (2011) 535-541. https://doi.org/10.1007/s10800-011-0263-6

S. Basavanna, Y. A. Naik, Indian Journal of Chemical Technology 19 (2012) 91-95. http://nopr.niscair.res.in/handle/123456789/13703

D. Chen, A. E. Martell, Inorganic Chemistry, 26(1987) 1026-1030. https://doi.org/10.1021/ic00254a013

L. P. Berube, G.L. Esperance, Journal of Electrochemical Society 136 (1989) 2314-2328. http://jes.ecsdl.org/content/136/8/2314.abstract

K. O. Nayana, T. V. Venkatesha, Bulletin of Material Science 37(2014) 1137-1146. https://www.ias.ac.in/article/fulltext/boms/037/05/1137-1146

Y. Addi, A. Khouider, International Journal of Electrochemistry 2011 (2011) 1-7. http://dx.doi.org/10.4061/2011/742191

M. M. Abou-Krisha, Applied Surface Science 252 (2005) 1035-1048. https://doi.org/10.1016/j.apsusc.2005.01.161

B. R. Schariffker, G. Hills, Electrochimica Acta 28 (1983) 879-889.

A. E. Alvarez, D. R. Salinas, Journal of Electroanalytical Chemistry 566 (2004) 393-400. https://doi.org/10.1016/j.jelechem.2003.11.051

A. Bai, C. C. Hu, Electrochimica Acta 50 (2005) 1335–1345. https://doi.org/10.1016/j.electacta.2004.07.055

Published
06-05-2019
Section
Electrochemical Science