Role of the newly synthesized brightener in modification of surface properties of Zn-Ni alloy electrodeposited on steel substrate
DOI:
https://doi.org/10.5599/jese.606Keywords:
Nucleation, electrocrystallization, electrodeposition, zinc-nickel, Schariffker and Hills modelAbstract
In the present study, a new brightener was synthesized by condensation of salicylaldehyde and cysteine hydrochloride (SC). To examine the influence of SC on the nucleation mechanism of Zn-Ni alloy, electrodeposition, cyclic voltammetric and chronoamperometric studies were carried out. The model of Schariffker and Hills was used to analyze current transients which explained the electrocrystallization process of Zn-Ni alloy. It is revealed that Zn-Ni electrocrystallization process in presence of SC is regulated by instantaneous nucleation mechanism. The corrosion studies were done for the bright and dull zinc-nickel alloy coatings in 3.5 wt.% NaCl solution, using potentiodynamic polarization and electrochemical impedance spectroscopic techniques. The phase structure, surface morphology and brightness of the deposit were characterized by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and reflectance studies. These studies revealed the role of SC in producing a bright Zn-Ni alloy coating on mild steel substrate and also showed its improved corrosion resistant nature.
Downloads
References
S. Rashmi, L. Elias, A. C. Hegde, Engineering Science & Technology 20 (2017) 1227-1232. https://doi.org/10.1016/j.jestch.2016.10.005
S. B. Ramesh, K.U. Bhat, A.C. Hegde, Analytical& Bioanalytical Electrochemistry 3 (2011) 302-315.
S. Basavanna, Y. A. Naik, Journal of Applied Electrochemistry 39 (2009) 1975-1982. https://doi.org/10.1007/s10800-009-9907-1
Z. Feng, Q. Li, J. Zhang, P. Yang, Journal of the Electrochemical Society 162 (2015) D412-D422. http://jes.ecsdl.org/content/162/9/D412.full
A. Brenner, Electrodeposition of alloys, principles and practice; Academic press, New York 1 (1963) E-Book ISBN: 9781483223117.
C. A. M. Dutra, J. W. J. Silva, R. Z. Nakazato, Materials Sciences and Applications 4 (2013) 644-648. https://file.scirp.org/Html/9-7701149_38134.htm
M. J. Rahman, S.R. Sen, M. Moniruzzaman, Journal of Mechanical Engineering 40 (2009) 9-14. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.2785&rep=rep1&type=pdf
Y. A. Naik, T.V. Venkatesha, Bulletin of Material Science 28 (2005) 495-501. https://doi.org/10.1007/BF02711243
S. Basavanna, Y. A. Naik, Journal of Applied Electrochemistry 41 (2011) 535-541. https://doi.org/10.1007/s10800-011-0263-6
S. Basavanna, Y. A. Naik, Indian Journal of Chemical Technology 19 (2012) 91-95. http://nopr.niscair.res.in/handle/123456789/13703
D. Chen, A. E. Martell, Inorganic Chemistry, 26(1987) 1026-1030. https://doi.org/10.1021/ic00254a013
L. P. Berube, G.L. Esperance, Journal of Electrochemical Society 136 (1989) 2314-2328. http://jes.ecsdl.org/content/136/8/2314.abstract
K. O. Nayana, T. V. Venkatesha, Bulletin of Material Science 37(2014) 1137-1146. https://www.ias.ac.in/article/fulltext/boms/037/05/1137-1146
Y. Addi, A. Khouider, International Journal of Electrochemistry 2011 (2011) 1-7. http://dx.doi.org/10.4061/2011/742191
M. M. Abou-Krisha, Applied Surface Science 252 (2005) 1035-1048. https://doi.org/10.1016/j.apsusc.2005.01.161
B. R. Schariffker, G. Hills, Electrochimica Acta 28 (1983) 879-889.
A. E. Alvarez, D. R. Salinas, Journal of Electroanalytical Chemistry 566 (2004) 393-400. https://doi.org/10.1016/j.jelechem.2003.11.051
A. Bai, C. C. Hu, Electrochimica Acta 50 (2005) 1335–1345. https://doi.org/10.1016/j.electacta.2004.07.055


