Electrodeposition of zinc-nickel alloys from ethylene glycol-based electrolytes in presence of additives for corrosion protection

Original scientific paper

Authors

  • Negar Fouladvari Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy https://orcid.org/0000-0002-6378-5066
  • Gozde Firtin Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy https://orcid.org/0009-0005-4083-7563
  • Buse Kahyaoglu Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy https://orcid.org/0009-0009-9956-4212
  • Luca Nobili Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy https://orcid.org/0000-0002-9300-2405
  • Roberto Bernasconi Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy https://orcid.org/0000-0003-2193-8017

DOI:

https://doi.org/10.5599/jese.1895

Keywords:

Plating, non-aqueous solvent, ammonium chloride, anticorrosion coating
Graphical Abstract

Abstract

In the present work the electrodeposition of zinc-nickel alloys with 15-20 wt.% nickel from non-aqueous solutions based on ethylene glycol is investigated. Potentiostatic deposition conditions are used, which are found to offer optimal coating quality and superior control over composition. In addition, ammonium chloride is evaluated as additive to partially suppress nickel incorporation into the deposit and to enhance layer quality. Layers composition, surface morphology of the deposits and their anticorrosive properties are investigated. The electrochemical characteristics of the Zn-Ni electrolytes are studied using cyclic voltammetry measurements. From the phase composition point view, X-ray diffraction results confirm that a metastable γ phase is present in the as deposited Zn-Ni alloys with nickel content 16-18 wt.%. Corrosion tests show that the barrier behaviour against corrosion of Zn-Ni films electrodeposited from the NH4Cl containing bath is superior in comparison to layers plated from an additive-free bath. The use of the additive enlarges the grains and provides a compact surface structure, which upskills the anticorrosive behaviour of the deposit.

Downloads

Download data is not yet available.

References

H. Kania, Corrosion and Anticorrosion of Alloys/Metals: The Important Global Issue, Coatings 13 (2023) 216. https://doi.org/10.3390/coatings13020216

S. Fashu, R. Khan, Recent work on electrochemical deposition of Zn-Ni (-X) alloys for corrosion protection of steel, Anti-Corrosion Methods and Materials 66 (2019) 45-60. https://doi.org/10.1108/ACMM-06-2018-1957

G. D. Wilcox, D. R. Gabe, Electrodeposited zinc alloy coatings, Corrosion Science 35 (1993) 1251-1258. https://doi.org/10.1016/0010-938X(93)90345-H

S. Anwar, F. Khan, Y. Zhang, Corrosion behaviour of Zn-Ni alloy and Zn-Ni-nano-TiO2 composite coatings electrodeposited from ammonium citrate baths, Process Safety and Environmental Protection 141 (2020) 366-379. https://doi.org/10.1016/j.psep.2020.05.048

M. Mouanga, L. Ricq, P. Berçot, Electrodeposition and characterization of zinc-cobalt alloy from chloride bath; influence of coumarin as additive, Surface and Coatings Technology 202 (2008) 1645-1651. https://doi.org/10.1016/j.surfcoat.2007.07.023

I. H. Karahan, H. S. Güder, Electrodeposition and properties of Zn, Zn-Ni, Zn-Fe and Zn-Fe-Ni alloys from acidic chloride-sulphate electrolytes, Transactions of the IMF 87 (2009) 155-158. https://doi.org/10.1179/174591909X438875

M. M. Abou-Krisha, Effect of pH and current density on the electrodeposition of Zn-Ni-Fe alloys from a sulfate bath, Journal of Coatings Technology and Research 9 (2012) 775-783. https://doi.org/10.1007/s11998-012-9402-1

Y. Boonyongmaneerat, S. Saenapitak, K. Saengkiettiyut, Reverse pulse electrodeposition of Zn-Ni alloys from a chloride bath, Journal of Alloys and Compounds 487 (2009) 479-482. https://doi.org/10.1016/j.jallcom.2009.07.163

M. Beheshti, M. C. Ismail, S. Kakooei, S. Shahrestani, Influence of temperature and potential range on Zn-Ni deposition properties formed by cyclic voltammetry electrodeposition in chloride bath solution, Corrosion Reviews 38 (2020) 127-136. https://doi.org/10.1515/corrrev-2019-0086

N. Benachour, S. Chouchane, J.-P. Chopart, The electroplating process of zinc-nickel system under perpendicular magnetic field from chloride bath, Materials Science and Technology 38 (2022) 1046-1055. https://doi.org/10.1080/02670836.2022.2069655

D. V Burlyaev, A. E. Tinaeva, K. E. Tinaeva, O. A. Kozaderov, Electrodeposition of zinc-nickel coatings from glycine-containing ammonium-chloride electrolyte, Protection of Metals and Physical Chemistry of Surfaces 56 (2020) 552-559. https://doi.org/10.1134/S2070205120030077

K. Ramazan, Y. Uğur, Statistical studies of Zn-Ni alloy coatings using Non-cyanide alkaline baths containing polyethyleneimine complexing agents, Transactions of the IMF 92 (2014) 245-252. https://doi.org/10.1179/0020296714Z.000000000195

R. Katırcı, Effects of ZnO and NaOH in Zn-Ni bath, Surface Engineering 31 (2015) 11-16. https://doi.org/10.1179/1743294414Y.0000000341

J. S. Wilkes, A short history of ionic liquids—from molten salts to neoteric solvents, Green Chemistry 4 (2002) 73-80. https://doi.org/10.1039/B110838G

W. Simka, D. Puszczyk, G. Nawrat, Electrodeposition of metals from non-aqueous solutions, Electrochimica Acta 54 (2009) 5307-5319. https://doi.org/10.1016/j.electacta.2009.04.028

F. Liu, Y. Deng, X. Han, W. Hu, C. Zhong, Electrodeposition of metals and alloys from ionic liquids, Journal of Alloys and Compounds 654 (2016) 163-170. https://doi.org/10.1016/j.jallcom.2015.09.137

P. E. Valverde, T. A. Green, S. Roy, Effect of water on the electrodeposition of copper from a deep eutectic solvent, Journal of Applied Electrochemistry 50 (2020) 699-712. https://doi.org/10.1007/s10800-020-01408-1

D. Ushchapovskiy, V. Vorobyova, G. Vasyliev, O. Linyucheva, Electrodeposition of polyfunctional Ni coatings from deep eutectic solvent based on choline chloride and lactic acid, Journal of Electrochemical Science and Engineering 12 (2022) 1025-1039. https://doi.org/10.5599/jese.1451

R. Bernasconi, A. Lucotti, L. Nobili, L.Magagnin, Ruthenium electrodeposition from deep eutectic solvents, Journal of The Electrochemical Society 165 (2018) D620-D627. http://dx.doi.org/10.1149/2.0541813jes

J.-F. Huang, I.-W. Sun, Nonanomalous electrodeposition of zinc-iron alloys in an acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid, Journal of The Electrochemical Society 151 (2003) C8. http://dx.doi.org/10.1149/1.1628235

P. P. Chung, P. A. Cantwell, G. D. Wilcox, G. W. Critchlow, Electrodeposition of zinc-manganese alloy coatings from ionic liquid electrolytes, Transactions of the IMF 86 (2008) 211-219. https://doi.org/10.1179/174591908X327572

Q. Chu, J. Liang, J. Hao, Electrodeposition of zinc-cobalt alloys from choline chloride-urea ionic liquid, Electrochimica Acta 115 (2014) 499-503. https://doi.org/10.1016/j.electacta.2013.10.204

A. P. Abbott, G. Capper, K. J. McKenzie, K. S. Ryder, Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride, Journal of Electroanalytical Chemistry 599 (2007) 288-294. https://doi.org/10.1016/j.jelechem.2006.04.024

R. Bernasconi, G. Panzeri, G. Firtin, B. Kahyaoglu, L. Nobili, L. Magagnin, Electrodeposition of ZnNi Alloys from Choline Chloride/Ethylene Glycol Deep Eutectic Solvent and Pure Ethylene Glycol for Corrosion Protection, The Journal of Physical Chemistry B 124 (2020) 10739-10751. https://doi.org/10.1021/acs.jpcb.0c04784

K. K. Maniam, S. Paul, Progress in Electrodeposition of Zinc and Zinc Nickel Alloys Using Ionic Liquids, Applied Science 10 (2020) 5321. https://doi.org/10.3390/app10155321

J. S. Kavirajwar, B. Shivarudraiah, Y. A. Nayaka, Role of the newly synthesized brightener in modification of surface properties of Zn-Ni alloy electrodeposited on steel substrate, Journal of Electrochemical Science and Engineering 9 (2019) 175-185. https://doi.org/10.5599/jese.606

J. A. Juma, H. K. Ismail, W. O. Karim, S. J. Salih, High quality mirror finish fabrication of nickel electrodeposited using hydantoin from a mixture of choline chloride-ethylene glycol, Arabian Journal of Chemistry 14 (2021) 102966. https://doi.org/10.1016/j.arabjc.2020.102966

A. P. Abbott, A. Ballantyne, R. C. Harris, J. A. Juma, K. S. Ryder, Bright metal coatings from sustainable electrolytes: the effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent, Physical Chemistry Chemical Physics 19 (2017) 3219-3231. https://doi.org/10.1039/C6CP08720E

A. P. Abbott, J. C. Barron, G. Frisch, K. S. Ryder, A. F. Silva, The effect of additives on zinc electrodeposition from deep eutectic solvents, Electrochimica Acta 56 (2011) 5272-5279 https://doi.org/10.1016/j.electacta.2011.02.095

J. A. Juma, The effect of organic additives in electrodeposition of Co from deep eutectic solvents, Arabian Journal of Chemistry 14 (2021) 103036. https://doi.org/10.1016/j.arabjc.2021.103036

H. F. Alesary, H. K. Ismail, N. M. Shiltagh, R. A. Alattar, L. M. Ahmed, M. J. Watkins, K. S. Ryder, Effects of additives on the electrodeposition of ZnSn alloys from choline chloride/ethylene glycol-based deep eutectic solvent, Journal of Electroanalytical Chemistry 874 (2020) 114517. https://doi.org/10.1016/j.jelechem.2020.114517

S. Fashu, C.-D. Gu, J.-L. Zhang, M.-L. Huang, X.-L. Wang, J.-P. Tu, Effect of EDTA and NH4Cl additives on electrodeposition of Zn-Ni films from choline chloride-based ionic liquid, Transactions of Nonferrous Metals Society of China (English Ed. 25 (2015) 2054-2064. https://doi.org/10.1016/S1003-6326(15)63815-8

K. K. Kasem, S. Jones, Platinum as a reference electrode in electrochemical measurements, Platinum Metals Review 52 (2008) 100-107. https://doi.org/10.1595/147106708X297855

M. Lukaczynska, E. A. Mernissi Cherigui, A. Ceglia, K. Van Den Bergh, J. De Strycker, H. Terryn, J. Ustarroz, Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents, Electrochimica Acta 319 (2019) 690-704. https://doi.org/10.1016/j.electacta.2019.06.161

A. M. Popescu, C. Donath, V. Constantin, Density, viscosity and electrical conductivity of three choline chloride based ionic liquids, Bulgarian Chemical Communications 46 (2014) 452-457. https://www.researchgate.net/profile/Virgil-Constantin-2/publication/269035448_Density_viscosity_and_electrical_conductivity_of_three_choline_chloride_based_ionic_liquids/links/547d9ccd0cf285ad5b08a86d/Density-viscosity-and-electrical-conductivity-of-three-choline-chloride-based-ionic-liquids.pdf

R. Brookes, A. Davies, G. Ketwaroo, P. A. Madden, Diffusion coefficients in ionic liquids: relationship to the viscosity, The Journal of Physical Chemistry B 109 (2005) 6485-6490. https://doi.org/10.1021/jp046355c

R. Bernasconi, G. Panzeri, A. Accogli, F. Liberale, L. Nobili, L. Magagnin, Electrodeposition from deep eutectic solvents, in Progress and Developments in Ionic Liquids, S. Handy (Ed.), IntechOpen, 2017. https://doi.org/10.5772/62621

J. R. Gray, Conductivity analyzers and their application, in Environmental Instrumentation and Analysis Handbook, R.D. Down P.E., J.H. Lehr (Eds.), John Wiley & Sons Inc., New York, (2004) 491-510. https://doi.org/10.1002/0471473332.ch23

S. Ieffa, R. Bernasconi, L. Nobili, P. L. Cavallotti, L. Magagnin, Direct and pulse plating of metastable Zn-Ni alloys, Transactions of the IMF 92 (2014) 321-324. https://doi.org/10.1179/0020296714Z.000000000209

O. S. Fayomi, An investigation of the properties of Zn coated mild steel, International Journal of Electrochemical Science 7 (2012) 6555-6570. https://doi.org/10.1016/S1452-3981(23)19502-2

O. Kozaderov, J. Światowska, D. Dragoe, D. Burliaev, P. Volovitch, Effect of Cr (III) passivation layer on surface modifications of zinc-nickel coatings in chloride solutions, Journal of Solid State Electrochemistry 25 (2021) 1161-1173. https://doi.org/10.1007/s10008-021-04898-x

O. Hammami, L. Dhouibi, E. Triki, Influence of Zn-Ni alloy electrodeposition techniques on the coating corrosion behaviour in chloride solution, Surface and Coatings Technology 203 (2009) 2863-2870. https://doi.org/10.1016/j.surfcoat.2009.02.129

Published

27-07-2023 — Updated on 27-07-2023

How to Cite

Fouladvari, N., Firtin, G., Kahyaoglu, B., Nobili, L., & Bernasconi, R. (2023). Electrodeposition of zinc-nickel alloys from ethylene glycol-based electrolytes in presence of additives for corrosion protection: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(6), 981–993. https://doi.org/10.5599/jese.1895

Issue

Section

Electrodeposition and coatings