Electrodeposition of polyfunctional Ni coatings from deep eutectic solvent based on choline chloride and lactic acid

Original scientific paper


  • Dmytro Ushchapovskiy National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Peremohy, Kyiv-56, 03056, Ukraine https://orcid.org/0000-0002-2809-2774
  • Viktoria Vorobyova National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Peremohy, Kyiv-56, 03056, Ukraine https://orcid.org/0000-0001-7479-9140
  • Georgii Vasyliev National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Peremohy, Kyiv-56, 03056, Ukraine https://orcid.org/0000-0003-4056-5551
  • Olga Linyucheva National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Peremohy, Kyiv-56, 03056, Ukraine




Ni plating, current efficiency, crystal grains size, nanostructured surface, polarization
Graphical Abstract


The process of electrodeposition of nickel coatings from electrolytes based on a deep eutectic solvent (DES) mixture of choline chloride and lactic acid with a molar ratio of 1:3 was studied. The physicochemical properties and characteristics of DES, namely, con­ductivity, FT-IR and NMR analysis were determined. FT-IR results confirmed that H-bonds occurring between two components in DES were the main force leading to the eutectic formation. Electrochemical techniques were used to characterize the deposition process and scanning electron microscopy was used to study the deposit morphology. Based on polarization measurements, it has been found that at NiCl2·6H2O content of 1.14 M and a temperature of 75 °C, the limiting current density of nickel electrodeposition was near 2 A dm-2. The polarization of the cathodic nickel deposition varied within -0.63 to 1.1 V at current density of 0.25 A dm-2 It has been shown that an increase of water content in the electrolyte does not significantly affect the current efficiency of the nickel electrodeposition process, which was in a range 85-93 %. However, the increase in water content contributes to the increase of heterogeneity and crystal grains size distribution of galvanic deposits. The established values of the Wagner number indicate the predominance of the primary current density distribution in the process of electrodeposition of nickel coatings. Galvanic coatings possess a highly developed nanostructured surface, exhibit increased capillary properties, and can be used as electrode materials for the process of electrolysis of water.


Download data is not yet available.


B. B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J. M. Klein, A. Horton, L. Adhikari, T. Zelovich, B. W. Doherty, B. Gurkan, E. J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G. A. Baker, M. E. Tuckerman, R. F. Savinell, J. R. Sangoro, Deep eutectic solvents: A review of fundamentals and applications, Chemical Reviews 121 (2021) 1232-1285. https://doi.org/10.1021/acs.chemrev.0c00385

G. Di Carmine, A. P. Abbott, C. D'Agostino, Deep eutectic solvents: alternative reaction media for organic oxidation reactions, Reaction Chemistry & Engineering 6 (2021) 582-598.


A. P. Abbott, K. J. Edler, A. J. Page, Deep eutectic solvents—The vital link between ionic liquids and ionic solutions, Journal of Chemical Physics 155 (2021) 150401. https://doi.org/10.1063/5.0072268

L. Lomba, M.P. Ribate, E. Sangüesa, J. Concha, M. P. Garralaga, D. Errazquin, C. B. García, B. Giner, Deep eutectic solvents: Are they safe?, Applied Science 11 (2021) 10061. https://doi.org/10.3390/app112110061

T. El Achkar, H. Greige-Gerges, S. Fourmentin, Basics and properties of deep eutectic solvents: a review, Environmental Chemistry Letters 19 (2021) 3397-3408. https://doi.org/10.1007/s10311-021-01225-8

K. M. Kuehn, C.M. Massmann, N.R. Sovell, Choline chloride eutectics: Low temperature applications, Journal of Undergraduate Research 15 (2017) 5. https://openprairie.sdstate.edu/jur/vol15/iss1/5

R. Bernasconi, G. Panzeri, A. Accogli, F. Liberale, L. Nobili, L. Magagnin, Progress and developments in ionic liquids, IntechOpen, London, United Kingdom, 2017, 235-254. https://doi.org/10.5772/64935

K. L. Fow, M. Ganapathi, I. Stassen, K. Binnemans, J. Fransaer, D.E. De Vos, Catalytically active gauze-supported skeletal nickel prepared from Ni–Zn alloys electrodeposited from an acetamide–dimethyl sulfone eutectic mixture, Catalysis Today 246 (2015) 191-197. https://doi.org/10.1016/j.cattod.2014.10.028

A.P. Abbott, A. Ballantyne, R.C. Harris, J.A. Juma, K.S. Ryder, Bright metal coatings from sustainable electrolytes: The effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent, Physical Chemistry Chemical Physics 19 (2017) 3219-3231. https://doi.org/10.1039/c6cp08720e

L.H. Xua, D. Wu, M. Zhong, G.B. Wang, X.Y. Chen, Z.J. Zhang, The construction of a new deep eutectic solvents system based on choline chloride and butanediol: The influence of the hydroxyl position of butanediol on the structure of deep eutectic solvent and supercapacitor performance, Journal of Power Sources 490 (2021) 229365. https://doi.org/10.1016/j.jpowsour.2020.229365

M.K. Tran, M.-T.F. Rodrigues, K. Kato, G. Babu, P.M. Ajayan, Deep eutectic solvents for cathode recycling of Li-ion batteries, Nature Energy 4 (2019) 339-345. https://doi.org/10.1038/s41560-019-0368-4

M. E. Di Pietro, A. Melea, Deep eutectics and analogues as electrolytes in batteries, Journal of Molecular Liquids 338 (2021) 116597. https://doi.org/10.1016/j.molliq.2021.116597

J. Winiarski, A. Niciejewska, J. Ryl, K. Darowicki, S. Baśladyńska, K. Winiarska, B. Szczygieł, Ni/cerium molybdenum oxide hydrate microflakes composite coatings electrodeposited from choline chloride: Ethylene glycol deep eutectic solvent, Materials 13 (2020) 924-941. https://doi.org/10.3390/ma13040924

A.P. Abbotta, A. Ballantyne, R.C. Harris, J.A. Jumma, K.S. Ryder, G. Forrest, Comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions, Electrochimica Acta 176 (2015) 718-726. https://doi.org/10.1016/j.electacta.2015.07.051

S.P. Rosoiu, A.G. Pantazi, A. Petica, A. Cojocaru, S. Costovici, C. Zanella, T. Visan, L. Anicai, M. Enachescu, Comparative study of Ni-Sn alloys electrodeposited from choline chloride-based ionic liquids in direct and pulsed current, Coatings 9 (2019) 801-815. https://doi.org/10.3390/coatings9120801

S. Costovici, A.-C. Manea, T. Visan, L. Anicai, Investigation of Ni-Mo and Co-Mo alloys electrodeposition involving choline chloride based ionic liquids, Electrochimica Acta 207 (2016) 97-111. https://doi.org/10.1016/j.electacta.2016.04.173

E. Gutierrez, J. A. Rodriguez, J. Cruz-Borbolla, Y. Castrillejo, E. Barrado, Effect of deep eutectic solvent composition on the corrosion ehavior of electrodeposited cadmium coatings on carbon steel, International Journal of Electrochemical Science 13 (2018) 11016-11023. https://doi.org/10.20964/2018.11.83

P. Cojocaru, L. Magagnin, E. Gomez, E. Vallés, Using deep eutectic solvents to electrodeposit CoSm films and nanowires, Materials Letters 65 (2011) 3597-3600. https://doi.org/10.1016/j.matlet.2011.08.003

C. Fanali, V. Gallo, S. D. Posta, L. Dugo, L. Mazzeo, M. Cocchi, V. Piemonte, L. De Gara, Choline chloride–lactic acid-based NADES as an extraction medium in a response surface methodology-optimized method for the extraction of phenolic compounds from hazelnut skin, Molecules 26 (2021) 2652. https://doi.org/10.3390/molecules26092652

Q. Bao, L. Zhao, H. Jing, A. Mao, Electrodeposition of zinc from low transition temperature mixture formed by choline chloride + lactic acid, Materials Today Communications 14 (2018) 249-253. https://doi.org/10.1016/j,mtcomm.2018.01.015

A. Skulcova, A. Russ, M. Jablonsky, J. Sima, The pH behavior of seventeen deep eutectic solvents, Biological Research 13 (2018) 5042-5051. https://doi.org/10.15376/biores.13.3.5042-5051

V.I. Vorobyova, O.V. Linyucheva, O.E. Chygyrynets, M.I. Skiba, G.S. Vasyliev, Comprehensive physicochemical evaluation of deep eutectic solvents: quantum-chemical calculations and electrochemical stability, Molecular Crystals and Liquid Crystals, May 2022. https://doi.org/10.1080/15421406.2022.2073037

G. Vasyliev, L. Khrokalo, K. Hladun, M. Skiba, V. Vorobyova, Valorization of tomato pomace: extraction of value-added components by deep eutectic solvents and their application in the formulation of cosmetic emulsions, Biomass Conversion and Biorefinery 12 (2022) 95-111. https://doi.org/10.1007/s13399-022-02337-z

R. Alcalde, A. Gutiérrez Vega, M. Atilhan, S. Aparicio, An experimental and theoretical investigation of the physicochemical properties on choline chloride – Lactic acid based natural deep eutectic solvent (NADES), Journal of Molecular Liquids 290 (2019) 110916. https://doi.org/10.1016/j.molliq.2019.110916

F.I. Danilov, V.S. Protsenko, A.A. Kityk, D.A. Shaiderov, E.A. Vasil’eva, U.P. Kumar, C.J. Kennady, Electrodeposition of nanocrystalline nickel coatings from a deep eutectic solvent with water addition, Protection of Metals and Physical Chemistry of Surfaces 53 (2017) 1131-1138. https://doi.org/10.1134/S2070205118010203

J.O. Dukovic, Current Distribution and Shape Change in Electrodeposition of Thin Films for Microelectronic Fabrication, Chap.3 in: Advances in Electrochemical Science and Engineering, Vol. 3, H. Gerischer, C.W. Tobias, (Eds.), Wiley-VCH, Weinheim, 1993, 117-161. https://doi.org/10.1002/9783527616770.ch3

D.Yu. Ushchapovskyi, O.V. Linyucheva, R.M. Redko, A.I. Kushmyruk, A.S. Zabaluev, Simulation approach in the development of polyfunctional electrode materials, in: Promising Materials and Processes in Applied Electrochemistry, monograph, Kyiv National University of Technologies and Design, Kyiv, Ukraine, 2020, 70-79. https://er.knutd.edu.ua/bitstream/123456789/17001/1/Promising_2020_P070-079.pdf

G. Vasyliev, V. Vorobyova, D. Uschapovskiy, O. Linyucheva, Local electrochemical deposition of copper from sulfate solution, Journal of Electrochemical Science and Engineering 12 (2022) 557-563. https://doi.org/https://doi.org/10.5599/jese.1352

D.Yu. Ushchapovskyi, O.V. Linyucheva, T.I. Motronyuk, H.Yu. Podvashetskyi, Electrodeposited nanostructured polyfunctional tin-based electrocatalyst, Journal of Chemistry and Technologies 29 (2021) 363-369. https://doi.org/10.15421/jchemtech.v29i3.236134

J.K. Abdali, A.A. Alwan, R.H. Hameed, Heat pipe and applications-recent advances and review, Test Engineering and Management 83 (2020) 13182-13198. https://www.researchgate.net/publication/344442623

A. M. Gheitaghy, H. Saffari, M. Mohebbi, Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating, Experimental Thermal and Fluid Science, 76 (2016) 87-97. https://doi.org/10.1016/j.expthermflusci.2016.03.011

R. Ding, S. Cui, J. Lin, Z. Sun, P. Du, C. Chen, Improving the water splitting performance of nickel electrodes by optimizing their pore structure using a phase inversion method, Catalysis Science & Technology 7 (2017) 3056-3064. https://doi.org/10.1039/C7CY00519A

H. Yin, L. Jiang, P. Liu, M. Al-Mamun, Y. Wang, Y.L. Zhong, H. Yang, D. Wang, Z. Tang, H. Zhao, Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution, Nano Research 11 (2018) 3959-3971. https://doi.org/10.1007/s12274-017-1886-7

X. Gao, Y. Chen, T. Sun, J. Huang, W. Zhang, Q. Wang, R. Cao, Karst landform-featured monolithic electrode for water electrolysis in neutral media, Energy & Environmental Science 13 (2020) 174-182. https://doi.org/10.1039/C9EE02380A




How to Cite

Ushchapovskiy, D., Vorobyova, V., Vasyliev, G., & Linyucheva, O. (2022). Electrodeposition of polyfunctional Ni coatings from deep eutectic solvent based on choline chloride and lactic acid: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(5), 1025–1039. https://doi.org/10.5599/jese.1451



Electrochemical Science