Recovery of nickel from spent NiCd batteries by regular and ultrasonic leaching followed by electrodeposition

  • Elumalai Selvamani Nivetha Department of Chemical Engineering, A.C.Tech Campus, Anna University, Chennai-600 025
  • Ramanujam Saravanathamizhan Department of Chemical Engineering, A.C.Tech Campus, Anna University, Chennai-600 025
Keywords: Electrodeposition, leaching, spent battery, ultrasonication


This study focuses on the hydrometallurgical route of separating Ni metal from spent nickel cadmium (NiCd) batteries. The comparison of separation of nickel metal with the assistance of ultrasonic leaching and regular leaching was performed. Sulphuric acid (solvent) was used as the lixiviant to leach out the nickel metal ions from the spent battery and the parameters affecting the leaching with and without ultrasonication were optimized. The major parameters affecting the leaching process are volume of solvent, concentration of lixiviant and leaching time. The electrodeposition of nickel metal ions from ultrasonically assisted and regular leaching was carried out at an optimized current density of 8 A dm-2, contact time of 4 hours and the concentration of lixiviant of 5 M. It was observed that the recovery efficiency for ultrasonically assisted leaching followed by electrodeposition is 98.5 %, while in regular leaching followed by electrodeposition is 90.8 %.


Download data is not yet available.


L. E. O. C Rodrigues, M. B. Mansur, Journal of Power Sources 195 (2010) 3735-3741.

C. C. B. Martha de Souza, D. Corrêa de Oliviera, J. A. S. Tenório, Journal of Power Sources 103 (2001) 120–126.

L. C. Ferracin, A. E. Chácon-Sanhueza, R. A. Davoglio, L. O. Rocha, D. J. Caffeu, A. R. Fontanetti, R. C. Rocha Filho, S. R. Biaggio, N. Bocchi, Hydrometallurgy 65 (2002) 137–144.

D. A. Bertuol, A. M. Bernardes, J. A. S. Tenório, Journal of Power Sources 193 (2009) 914-923.

I. C. Nnorom, O. Osibanjo, International Journal of Environmental Science and Technology 6 (2009) 641-650.

Y. Pranolo, W. Zhang, C. Y. Cheng, Hydrometallurgy 102 (2010) 37-42.

P. Meshram, B. D. Pandey, T. R. Mankhand, Hydrometallurgy 158 (2015) 172-179.

R. Oza, N. Shah, S. Patel, Society of Chemical Industries 86 (2011) 1276-1281.

V. Innocenzi, F.Veglio, Journal of Power Sources 211 (2012) 184-191.

K. Tanong, L. Coudert, G. Mercier, J.-F. Blais, Journal of Environmental Management 181 (2016) 95 107.

M. Marafi, A. Stanislaus, Industrial Engineering Chemistry Research 50 (2011) 9495-9501.

B. Avvaru, S. B. Roy, S. Chowdhury, K. N. Hareendran, A. B. Pandit, Industrial Engineering Chemistry Research 45 (2006) 7639-7648.

X. Wang, C. Srinivasakannan, X.-H. Duan, J.-H Peng, D.-J., Yang, S.-H. Ju, Separation and Purification Technology 115 (2013) 66–72.

L .Li, L.Zhai, X. Zhang, J. Lu, R. Chen, F. Wu, K. Amine, Journal of Power Sources 262 (2014) 380-385.

C. Hazotte, E. Meux, N. Leclerc, F. Lapicque, Chemical Engineering and Processing 96 (2015) 83 93.

I. Tudela, Y. Zhang, M. Pal, I. Kerr, A. J. Cobley, Surface and Coatings Technology 276 (2015) 89–105.

V. E. O. Santos, V. G. Celante, M. F. F. Lelis, M. B. J. G. Freitas, Journal of Power Sources 218 (2012) 435-444.

Electrochemical Engineering