Removal of nickel from Ni(II)-NH3-SO2-CO2-H2O system by electrocoagulation, sedimentation and filtration processes

Original scientific paper

Authors

  • Armando Rojas Vargas Empresa de Servicios Técnicos de Computación, Comunicaciones y Electrónica "Rafael Fausto Orejón Forment", Holguín, Cuba and Universidad de Holguín “Oscar Lucero Moya”, Holguín, Cuba https://orcid.org/0000-0002-8927-2023
  • María Elena Magaña Haynes Centro de Investigaciones del Níquel “Alberto Fernández Monte de Oca”, Holguín, Cuba
  • Crispin Sánchez Guillen Centro de Investigaciones del Níquel “Alberto Fernández Monte de Oca”, Holguín, Cuba
  • Forat Yasir AlJaberi Chemical Engineering Department, Chemical Engineering Department, College of Engineering, Al-Muthanna University, Al-Muthanna, Iraq https://orcid.org/0000-0003-4597-9593

DOI:

https://doi.org/10.5599/jese.1376

Keywords:

Electrocoagulation, kinetics, nickel removal, layered double hydroxide
Graphical Abstract

Abstract

The nickel removal by electrocoagulation of Ni(II)-NH3-CO2-SO2-H2O system was studied in a batch reactor of 50 L useful volume, with stirring and two pairs of aluminum electrodes. The operating parameters were nickel concentration between 255 and 342 mg L-1, current density of 11.0 and 16.6 mA cm-2, pH 8.34±0.06, mean temperature 58.4±3.9 °C and retention time of 50 min. The maximum nickel removal was 99.7 % at 11.0 mA cm-2, specific energy consumption 16.86 kWh kg-1 of Al3+, 2.438 kWh kg-1 of Ni and the adsorption capacity 5819 mg Ni g-1 of Al3+. The precipitate contained a nickel content of 37.2 % and a true density of 2720 kg m-3, hydro­talcite-like structure layered double hydroxides. The unit area of sedimentation was between 0.25 and 1.96 m2 t-1 day, at a density from 971 to 1019 kg m-1 and 53±4 °C. A model for pre­dicting the specific cake resis­tance was estimated as a function of pressure drop and sus­pension concentration at 44.45 kPa and 59.52 kg m-3, resulting in the value of 6.47±107 m kg-1. The average cake humidity was 88 % base humid.

Downloads

Download data is not yet available.

References

A. R. Vargas, M. E. M. Haynes, Acta Chimica Slovenica 67 (2020) 1239-1249. http://dx.doi.org/10.17344/acsi.2020.6147

A. R. Vargas, M. E. M. Haynes, A. R. Riverón, Revista de Metalurgia 55 (2019) e149. https://doi.org/10.3989/revmetalm.149

M. E. M. Haynes, A. R. Vargas, Revista Tecnología Química 33 (2013) 200-205. https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/401

M. E. M. Haynes, Revista Tecnología Química 36 (2016) 27-36. https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/595

S. R. Rivas, G. M. Vuelta, R. A. Rodríguez, Revista Tecnología Química 36 (2016) 145-153. https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/1118

A. R. Vargas, A.R. Riverón, M. P. Medina, Revista Tecnología Química 40 (2020) 363-382. https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5155

F. Y. AlJaberi, S. A. Ahmed, H. F. Makki, Heliyon 6 (2020) e03988. https://doi.org/10.1016/j.heliyon.2020.e03988

F. Y. AlJaberi, Chemical Engineering and Processing - Process Intensification 174 (2022) 108864. https://doi.org/10.1016/j.cep.2022.108864

N. Beyazit, International Journal of Electrochemical Science 9 (2014) 4315- 4330.

P. T. Sabedot, E. B. Jonko, Korean Journal of Chemical Engineering 34 (2017) 2631-2640. https://doi.org/10.1007/s11814-017-0178-y

S. Zhang, X. Yang, Q. Cheng, M. Wang, C. Hu, B. Chai, J. Li, Environmental Engineering Science 35 (2018) 861-871. https://doi.org/10.1089/ees.2016.0621

A. R. Vargas, A.R. Riverón, M. E. M. Haynes, D. D Álvarez, S. C. Sánchez, Revista Tecnología Química 42 (2022) 114-130. https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/5227

H. S. Coe, G. H. Clevenger, Trans AIME 55 (1916) 356-385.

G. J. Kynch, Transactions of the Faraday Society 48 (1952) 166-175. https://doi.org/10.1039/TF9524800166

W. P. Talmadge, E. B. Fitch, Industrial & Engineering Chemistry 47 (1955) 38-41. https://doi.org/10.1021/ie50541a022

J.H. Wilhelm, Y. Naide, Soc. Min. Eng. AIME annual meeting. New Orleans, 1979, Preprint N 79-30, p. 18.

C. C. Obunwo, S.D. Iboroma, A.P. Bagshaw, Journal of Applied Science and Environmental Management 21 (2017) 307-311. https://dx.doi.org/10.4314/jasem.v21i2.11

S.l. Xu, S. Rui, Y.Q. Cai, H.L. Sun, Granular Matter 20 (2018) 4. https://doi.org/10.1007/s10035-017-0769-7.

J. Zhang, W. Zhou, J. Liang, Q. Zhang, Effects of Temperature on the Flocculation Processes of Kaolinite in the Quiescent Water, International Conference on Asian and Pacific Coasts (APAC 2019), Singapore, 2020. https://doi.org/10.1007/978-981-15-0291-0_71

A. H. Ghawi, J. Kriš, Study the effect of temperature on rectangular sedimentation tanks performance, XX-TH Jubilee-National, VIII-TH International Scientific and Technical Conference Water Supply and Water Quality, Poland, 2008, p. 440.

Z. Potok, T. Rogozinski, Sustainability 12 (2020) 4816. https://doi.org/10.3390/su12124816

F. M. Mahdi, T. N. Hunter, R. G. Holdich, Processes 7 (2019) 746. https://doi.org/10.3390/pr7100746

O. J. Ituma, A. Joel, International Journal of Scientific & Engineering Research 9 (2018) 2222-2232.

N. S. Zafisaha, W. L. Ang, A. W. Mohammada, N. Hilalc, International Journal of Engineering, Transactions B 31 (2018) 1437-1445. https://doi.org/10.5829/ije.2018.31.08b.36

A. R. Cestari, E. F. S. Vieira, G. S. Vieira, Journal of Hazardous Materials B138 (2006) 133–141. https://doi.org/10.1016/j.jhazmat.2006.05.046.

E. F. S. Vieira, A. R. Cestari, E. C. N. Lopes, Reactive & Functional Polymers 67 (2007) 820–827. https://doi.org/10.1016/j.reactfunctpolym.2006.12.005

B. Royer, N. F. Cardoso, E. C. Lima, T. R. Macedo, C. Airoldo, Separation Science and Technology, 45 (2010) 129-141. http://dx.doi.org/10.1080/01496390903256257

E. C. Lima, A. R. Cestari, M. A. Adebayo, Desalination and Water Treatment, 57 (2016) 19566-19571. https://doi.org/10.1080/19443994.2015.1095129

A. I. Adeogun, R. B. Balakrishnan, Applied Water Science 7 (2017) 1711-1723. https://doi.org/10.1007/s13201-015-0337-4

A. A. Inyinbor, F. A. Adekola, G. A. Olatunji, Water Resources and Industry 15 (2016) 14–27. http://dx.doi.org/10.1016/j.wri.2016.06.001

H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao, Water Research 120 (2017), 88-116. https://doi.org/10.1016/j.watres.2017.04.014

N. Ç. Selçuk, Ş. Kubilay, A. Savran, A. R. Kul, Journal of Applied Chemistry 10 (2017) 53-63. https://doi.org/10.9790/5736-1005015363

L. W. Arimieari, J. O. Ademiluyi, Journal of Environmental Protection 9(2) (2018) 91-99. https://doi.org/10.4236/jep.2018.92007

J. R. O. Gutiérrez, A. V. Rojas, Revista Tecnología Química, 38 (2018) 24-35. https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/3213

D. Marmanis, K. Dermentzis, A. Christoforidis, V. Diamantisb, K. Ouzounisb, A. Agapiouc, M. Stylianou, Journal of Power Technologies 98 (2018) 377–381. https://papers.itc.pw.edu.pl/index.php/JPT/article/view/1462

N. A. Oladoja, Desalination and Water Treatment 57 (2016) 15813-15825. http://dx.doi.org/10.1080/19443994.2015.1076355

Y. Zhao, F. Xiao, Q. Jiao, Journal of Nanotechnology 2011 (2011) 646409. http://dx.doi.org/10.1155/2011/646409

M. Jitianu, D. C. Gunness, D. E. Aboagye, M. Zaharescu, A. Jitianu, Materials Research Bulletin 48 (2013) 1864-1873. http://dx.doi.org/10.1016/j.materresbull.2013.01.030

S. Jaerger, S. F. Zawadzki, A. Leuteritzb, F. Wypych, Journal of the Brazilian Chemical Society 28 (2017) 2391-2401. http://dx.doi.org/10.21577/0103-5053.20170093

B. Habibi, S. Ghaderi. Electrosynthesized, Bulletin of Chemical Reaction Engineering & Catalysis 12 (2017) 1-13. http://dx.doi.org/10.9767/bcrec.12.1.460.1-13

W. M. A. El Rouby, S. I. El-Dek, M. E. Goher, S. G. Noaemy, Environmental Science and Pollution Research 27 (2020) 18985-19003. https://doi.org/10.1007/s11356-018-3257-7

M. Rajamathi, P. V. Kamath, Bulletin of Materials Science 23 (2000) 355–359. https://doi.org/10.1007/BF02708384

F. Z. Mahjoubi, A. Khalidi, O. Cherkaoui, R. Elmoubarki, M. Abdennouri, N. Barka, Journal of Water Reuse and Desalination 7 (2017) 307-318. https://doi.org/10.2166/wrd.2016.041

F. Z. Mahjoubi, A. Elhalil, R. Elmoubarki, M. Sadiq, A. Khalidi, O. Cherkaoui, N. Barka, Journal of Applied Surfaces and Interfaces 2(1-3) (2017) 1-11. https://doi.org/10.48442/IMIST.PRSM/jasi-v2i1-3.10033

L. Yang, Z. Liu, S. Zhu, L. Feng, W. Xing, Materials Today Physics 16 (2021) 100292. https://doi.org/10.1016/j.mtphys.2020.100292

Y. T. Prabhu, K. V. Rao, V. S. Kumar, B. S. Kumari, World Journal of Nano Science and Engineering 4 (2014) 21-28. http://dx.doi.org/10.4236/wjnse.2014.41004

I. Takacs, G. Patry, D. Nolasco, Water Research 25 (1991) 1263-1271. https://doi.org/10.1016/0043-1354(91)90066-Y

P. Balbierz, K. Rucka, Sludge settling characterization for the mathematical modelling of sidestream treatment processes, 9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering (EKO-DOK), E3S Web of Conferences 17 (2017) 00003. https://doi.org/10.1051/e3sconf/20171700003

Downloads

Published

06-07-2022 — Updated on 06-07-2022

How to Cite

Vargas, A. R., Haynes, M. E. M., Guillen, C. S., & Yasir AlJaberi, F. (2022). Removal of nickel from Ni(II)-NH3-SO2-CO2-H2O system by electrocoagulation, sedimentation and filtration processes: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(2), 373–391. https://doi.org/10.5599/jese.1376

Issue

Section

Electrochemical Engineering