Improving the corrosion behaviour of Zn-Ni alloy coatings on 316 SS from chloride-sulfate bath by addition of triethanolamine or sucrose

Original scientific paper

Authors

  • Mothana Ghazi Kadhim Alfalah Materials of Engineering Department, College of Engineering, University of Al-Qadisiyah, Al-Diwaniyah, Iraq https://orcid.org/0000-0002-8970-712X
  • Ali H. Abbar Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq https://orcid.org/0000-0003-4090-9254
  • Fatma Kandemirli Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Turkey https://orcid.org/0000-0001-6097-2184

DOI:

https://doi.org/10.5599/jese.2607

Keywords:

Corrosion resistance, Zn-Ni alloy, Electrodepositing, Triethanolamine, Sucrose, SEM

Abstract

Corrosion of Zn-Ni alloy coatings on stainless steel 316 SS in a chloride-sulfate bath with the addition of either triethanolamine or sucrose was examined. A constant cathode potential was used to deposit zinc-nickel alloys, while cyclic voltammetry and potentio-dynamic polarization were used to measure corrosion. In addition, scanning electron microscopy was utilized to analyse Zn-Ni alloy coating surface layers formed with¬out and with additives. The outcomes discovered that the corrosion resistance of Zn-Ni alloy coat¬ings in 3.5 % NaCl solution was highly influenced by adding triethanolamine or sucrose. Decreasing the Zn:Ni molar ratio led to an increase in corrosion resistance. All Zn-Ni alloy coatings were superior to pure Zn coating in their corrosion behaviour. The best result was found for potentiostatic electrodeposition of Zn-Ni alloy at the cathodic potential of -1.3 V vs. Ag/AgCl for 20 minutes in the presence of 0.335 M triethanolamine from a solution containing 0.02 M ZnCl2, 0.1 M NiSO4, 0.4 M H3BO4 and 1 M Na2SO4. For this Zn-Ni coating, a low corrosion rate of 0.00795 mm year-1 was observed at Ecorr = -0.5 V vs. Ag/AgCl and icorr= 0.535 µA cm-2. Scanning electron microscopy confirmed that this alloy has a granular structure with no cracks and a less porous structure. The new Zn-Ni alloy is superior in its properties in terms of corrosion resistance compared with those obtained in previous studies.

Downloads

Download data is not yet available.

References

Q. Hu, G. Zhang, Y. Qiu, X. Guo, The crevice corrosion behaviour of stainless steel in sodium chloride solution, Corrosion Science 53 (2011) 4065-4072. https://doi.org/10.1016/j.corsci.2011.08.012

F. Azizi, A. Kahoul, Electrodeposition and corrosion behaviour of Zn-Co coating produced from a sulphate bath, Transactions of the IMF 94 (2016) 43-48. https://doi.org/10.1080/00202967.2015.1122917

I.H. Karahan, H.S. Güder, Electrodeposition and properties of Zn, Zn-Ni, Zn-Fe and Zn-Fe-Ni alloys from acidic chloride-sulphate electrolytes, Transactions of the IMF 87 (2009) 155-158. https://doi.org/10.1179/174591909X438875

R. Fratesi, G. Roventi, Electrodeposition of zinc-nickel alloy coatings from a chloride bath containing NH 4 Cl, Journal of Applied Electrochemistry 22 (1992) 657-662. https://doi.org/10.1007/BF01092615

K.O. Nayana, T. V Venkatesha, K.G. Chandrappa, Influence of additive on nanocrystalline, bright Zn-Fe alloy electrodeposition and its properties, Surface and Coatings Technology 235 (2013) 461-468. https://doi.org/10.1016/j.surfcoat.2013.08.003

Y. Lin, J.R. Selman, Electrodeposition of corrosion‐resistant Ni‐Zn alloy: I. Cyclic voltammetric study, Journal of The Electrochemical Society 140 (1993) 1299. https://doi.org/10.1149/1.2220974

B. Mojarad Shafiee, R. Torkaman, M. Mahmoudi, R. Emadi, E. karamian, An improvement in corrosion resistance of 316L AISI coated using PCL-gelatin composite by dip-coating method, Progress in Organic Coatings 130 (2019) 200-205. https://doi.org/10.1016/j.porgcoat.2019.01.057

R. Fujisawa, M. Sakaihara, Y. Kurata, Y. Watanabe, Corrosion behaviour of nickel base alloys and 316 stainless steel in supercritical water under alkaline conditions. Corrosion Engineering, Science and Technology 40(3) (2005) 244-248.‏ https://doi.org/10.1179/174327805X66308

M. Wang, S. Zeng, H. Zhang, M. Zhu, C. Lei, B. Li, Corrosion behaviors of 316 stainless steel and Inconel 625 alloy in chloride molten salts for solar energy storage, High Temperature Materials and Processes 39(1) (2020) 340-350. https://doi.org/10.1515/htmp-2020-0077

J.R. Davis, Stainless Steels, ASM International, 1994. https://books.google.iq/books?id=OrlG98AHdoAC

L. Wei, X. Pang, K. Gao, Effect of flow rate on localized corrosion of X70 steel in supercritical CO2 environments, Corrosion Science 136 (2018) 339-351. https://doi.org/10.1016/j.corsci.2018.03.020

A. Brenner, Electrodeposition of Alloys: Principles and Practice, Elsevier, 2013. ISBN 978-14832231-17

G. Roventi, R. Fratesi, R.A. Della Guardia, G. Barucca, Normal and anomalous codeposition of Zn-Ni alloys from chloride bath, Journal of Applied Electrochemistry 30 (2000) 173-179. https://doi.org/10.1023/A:1003820423207

S.H. Mosavat, M.H. Shariat, M.E. Bahrololoom, Study of corrosion performance of electrodeposited nanocrystalline Zn-Ni alloy coatings, Corrosion Science 59 (2012) 81-87. https://doi.org/10.1016/j.corsci.2012.02.012

H. Conrad, J. Corbett, T.D. Golden, Electrochemical deposition of γ-phase zinc-nickel alloys from alkaline solution, ECS Transactions. 33 (2011) 85. https://doi.org/10.1149/1.3566091

H. M. Abd El-Lateef, E.-S. Abdel-Rahman, H. S. Mohran, Role of Ni content in improvement of corrosion resistance of Zn-Ni alloy in 3.5% NaCl solution. Part I: Polarization and impedance studies, Transactions of Nonferrous Metals Society of China 25 (2015) 2807-2816. https://doi.org/10.1016/S1003-6326(15)63906-1

E. Beltowska-Lehman, P. Ozga, Z. Swiatek, C. Lupi, Electrodeposition of Zn-Ni protective coatings from sulfate-acetate baths, Surface and Coatings Technology 151 (2002) 444-448. https://doi.org/10.1016/S0257-8972(01)01614-0

D. E. Hall, Electrodeposited Zinc--Nickel Alloy Coatings, Plating and Surface Finishing 70 (1983) 59-65.

J. B. Bajat, M. D. Maksimović, V. B. Mišković-Stanković, S. Zec, Electrodeposition and characterization of Zn-Ni alloys as sublayers for epoxy coating deposition, Journal of Applied Electrochemistry 31 (2001) 355-361. https://doi.org/10.1023/A:1017580019551

A. Petrauskas, L. Grincevičienė, A. Česūnienė, E. Matulionis, Stripping of Zn-Ni alloys deposited in acetate-chloride electrolyte under potentiodynamic and galvanostatic conditions, Surface and Coatings Technology 192 (2005) 299-304. https://doi.org/10.1016/j.surfcoat.2004.08.191

R. G. Baker, C. A. Holden, Zinc-nickel alloy electrodeposits: rack plating, Plating and Surface Finishing 72 (1985) 54-57. https://api.semanticscholar.org/CorpusID:100382391

K. Wykpis, M. Popczyk, A. Budniok, Electrolytic deposition and corrosion resistance of Zn-Ni coatings obtained from sulphate-chloride bath, Bulletin of Materials Science 34 (2011) 997-1001. https://doi.org/10.1007/s12034-011-0228-8

H. Nakano, S. Arakawa, Y. Takada, S. Oue, S. Kobayashi, Electrodeposition Behavior of a Zn-Ni Alloy in an Alkaline Zincate Solution, Materials Transactions 53 (2012) 1946-1951. https://doi.org/10.2320/matertrans.M2012241

L.S. Tsybulskaya, T. V Gaevskaya, O.G. Purovskaya, T. V Byk, Electrochemical deposition of zinc-nickel alloy coatings in a polyligand alkaline bath, Surface and Coatings Technology 203 (2008) 234-239. https://doi.org/10.1016/j.surfcoat.2008.08.067

M. G. Hosseini, H. Ashassi-Sorkhabi, H. A. Y. Ghiasvand, Electrochemical studies of Zn-Ni alloy coatings from non-cyanide alkaline bath containing tartrate as complexing agent, Surface and Coatings Technology 202 (2008) 2897-2904. https://doi.org/10.1016/j.surfcoat.2007.10.022

M. Li, S. Luo, Y. Qian, W. Zhang, L. Jiang, J. Shen, Effect of additives on electrodeposition of nanocrystalline zinc from acidic sulfate solutions, Journal of The Electrochemical Society 154 (2007) D567. https://doi.org/10.1149/1.2772093

O. Hammami, L. Dhouibi, P. Berçot, E. M. Rezrazi, E. Triki, Effect of diethanolamine and triethanolamine on the properties of electroplated Zn-Ni alloy coatings from acid bath, Canadian Journal of Chemical Engineering 91 (2013) 19-26. https://doi.org/10.1002/cjce.21627

V. Ravindran, V. S. Muralidharan, Zinc-Nickel Alloy Electrodeposition-Influence of Triethanolamine, Portugaliae Electrochimica Acta 25 (2007) 391. https://doi.org/10.4152/pea.200704391

H. Z. Zardini, M. Davarpanah, M. Shanbedi, A. Amiri, M. Maghrebi, L. Ebrahimi, Microbial toxicity of ethanolamines - Multiwalled carbon nanotubes, Journal of Biomedical Materials Research A 102 (2014) 1774-1781. https://doi.org/10.1002/jbm.a.34846

R. J. Ludwig, W. E. Rosenberg, Brightener additive and bath for alkaline cyanide-free zinc electroplating, US20040084322A1 (2004).

C. A. Loto, Electrodeposition of zinc from acid based solutions: a review and experimental study, Asian Journal of Applied Sciences 5(6) (2012) 314-326. 10.3923/ajaps.2012.314.326

H. Faid, L. Mentar, M. R. Khelladi, A. Azizi, Deposition potential effect on surface properties of Zn-Ni coatings, Surface Engineering 33 (2017) 529-535. https://doi.org/10.1080/02670844.2017.1287836

E. Gomez, X. Alcobe, E. Vallés, Characterisation of zinc+ cobalt alloy phases obtained by electrodeposition, Journal of Electroanalytical Chemistry 505 (2001) 54-61. https://doi.org/10.1016/S0022-0728(01)00450-8

G. Trejo, R. Ortega, Y. Meas, E. Chaînet, P. Ozil, Effect of benzylideneacetone on the electrodeposition mechanism of Zn-Co alloy, Journal of Applied Electrochemistry 33 (2003) 373-379. https://doi.org/10.1023/A:1024466604939

M. Ilayaraja, S. Mohan, R. M. Gnanamuthu, G. Saravanan, Nanocrystalline zinc-nickel alloy deposition using pulse electrodeposition (PED) technique, Transactions of the IMF 87 (2009) 145-148. https://doi.org/10.1179/174591909X438947

S. Al Saadi, Y. Yi, P. Cho, C. Jang, P. Beeley, Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution, Corrosion Science 111 (2016) 720-727. https://doi.org/10.1016/j.corsci.2016.06.011

R. Ramanauskas, P. Quintana, L. Maldonado, R. Pomés, M. A. Pech-Canul, Corrosion resistance and microstructure of electrodeposited Zn and Zn alloy coatings, Surface and Coatings Technology 92 (1997) 16-21. https://doi.org/10.1016/S0257-8972(96)03125-8

R. Kumar, S. Obrai, A. Kaur, M. S. Hundal, H. Meehnian, A. K. Jana, Synthesis, crystal structure investigation, DFT analyses and antimicrobial studies of silver (I) complexes with N, N, N′, N′′-tetrakis (2-hydroxyethyl/propyl) ethylenediamine and tris (2-hydroxyethyl) amine, New Journal of Chemistry 38 (2014) 1186-1198. https://doi.org/10.1039/C3NJ00729D

R. P. Sharma, A. Saini, P. Venugopalan, V. Ferretti, F. Spizzo, C. Angeli, C. J. Calzado, Magnetic behaviour vs. structural changes in an isomeric series of binuclear copper (II) complexes: an experimental and theoretical study, New Journal of Chemistry 38 (2014) 574-583. https://doi.org/10.1039/C3NJ01080E

H. Zhang, H. Liu, F. Chen, Y. Luo, X. Xiao, Y. Deng, N. Lu, Y. Liu, Microscopic characteristics and corrosion rate modeling in galvanized high-strength steel wires, Journal of Materials Research and Technology 33 (2024) 6234-6250. https://doi.org/10.1016/j.jmrt.2024.11.023

M. Ghazi, K. Alfalah, M. Izzettin, Corrosion inhibition potential of new oxo-pyrimidine derivative on mild steel in acidic solution: Experimental and theoretical approaches, Journal of Molecular Structure 1315 (2024) 138773. https://doi.org/10.1016/j.molstruc.2024.138773

M. Ghazi Kadhim AlFalah, M. Saracoglu, M. I. Yilmazer, F. Kandemirli, Corrosion inhibition performance of 2- Fluorophenyl-2, 5-dithiohydrazodicarbonamide for copper in 3.5%NaCl Media: Experimental and Monte Carlo insights, Al-Qadisiyah Journal for Engineering Sciences 16 (2023) 150-159. https://doi.org/10.30772/qjes.2023.178995

N. Eliaz, K. Venkatakrishna, A. C. Hegde, Electroplating and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co alloys, Surface and Coatings Technology 205 (2010) 1969-1978. https://doi.org/10.1016/j.surfcoat.2010.08.077

Published

02-04-2025

Issue

Section

Corrosion

How to Cite

Improving the corrosion behaviour of Zn-Ni alloy coatings on 316 SS from chloride-sulfate bath by addition of triethanolamine or sucrose: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(3), 2607. https://doi.org/10.5599/jese.2607

Similar Articles

1-10 of 373

You may also start an advanced similarity search for this article.