Exploration of the effect of Zn-MgO-UPP coating on hardness, corrosion resistance and microstructure properties of mild steel

Original scientific paper


  • Itopa Godwin Akande Department of Mechanical Engineering, Bells University of Technology, P.M.B. 1015, Ota, Ogun State, Nigeria https://orcid.org/0000-0002-6807-8539
  • Ojo Sunday Isaac Fayomi Department of Mechanical Engineering, Bells University of Technology, P.M.B. 1015, Ota, Ogun State, Nigeria
  • Bassey Jonah Akpan Department of Mechanical Engineering, Bells University of Technology, P.M.B. 1015, Ota, Ogun State, Nigeria https://orcid.org/0000-0003-3311-2095
  • Olajide Abraham Aogo Department of Research and Development Unit, Standard Connections Limited, Nigeria and Department of Mechanical Engineering, University of Ibadan, Ibadan, Oyo State, Nigeria https://orcid.org/0000-0003-0582-8715
  • Patrick Nwanne Onwordi Department of Mechanical Engineering, Bells University of Technology, P.M.B. 1015, Ota, Ogun State, Nigeria https://orcid.org/0000-0003-1849-6182




SEM, XRD, passivation, composite, homogeneity
Graphical Abstract


This paper investigated the effect of unripe plantain peel (UPP) nanoparticles reinforced Zn-MgO composite coating on the hardness, anti-corrosion and microstructure properties of mild steel. The anti-corrosion characteristics of the coatings were examined using the potentiodynamic polarization method, employing 3.65 % NaCl solution as the test medium. The hardness of the coatings was studied employing the Brinell hardness technique, while the microstructure characteristics were examined using XRD and SEM/EDS. The results of the study revealed that the as-received mild steel sample exhibited the corrosion rate and hardness value of 8.6272 mm year-1 and 136.8 kgf mm-2, respectively, while the Zn-MgO co­ated mild steel sample exhibited a corrosion rate and hardness value of 3.6362 mm year-1 and 42.5 kgf mm-2, respectively. The optimal performing Zn-MgO-UPP coated mild steel sample (sample coated with 20 g L-1 of MgO and 6 g L-1 of UPP) exhibited a corrosion rate and hardness value of 0.8317 mm year-1 and 245.8 kgf mm-2, respectively. The corrosion rate and hardness value of the Zn-20MgO-6UPP coated mild steel sample indicated that the UPP nanoparticles further improved the passivating and strengthening ability of Zn-MgO coating. Moreover, the XRD profile of the coatings possessed high intensities, which indi­cat­ed that the coatings exhibit microstructural and chemical homogeneity, high stability and good texture. It was observed on the SEM micrographs that the Zn-MgO-UPP coating exhi­bited a more refined microstructure compared to the Zn-MgO coating, indicating the grain refining tendency of the UPP nanoparticles. The EDS further indicated the presence of essential and dispersion strengthening elements in the coatings.


Download data is not yet available.


E. Ohaeri, U. Eduok, J. Szpunar, International Journal of Hydrogen Energy 43 (2018) 14584-14617. https://doi.org/10.1016/j.ijhydene.2018.06.064

M. Shivakumar, M. S. Dharmaprakash, S. Manjappa, K. L. Nagashree, Portugaliae Electrochimica Acta 35 (2017) 351-359. http://dx.doi.org/10.4152/pea.201706351

M. Murmu, S. K. Saha, N. C. Murmu, P. Banerjee, Journal of Molecular Liquids 278 (2019) 521-535. https://doi.org/10.1016/j.molliq.2019.01.066

O. S. I. Fayomi, I. G. Akande, D. E. Ighravwe, D. O. Aikhuele, Key Engineering Materials 886 (2021) 119-125. https://doi.org/10.4028/www.scientific.net/KEM.886.119

R. A. Rahman Rashid, M. A. Javed, C. Barr, S. Palanisamy, N. Matthews, M. S. Dargusch, International Journal of Advanced Manufacturing Technology 117 (2021) 2949-2958. https:/doi.org/10.1007/s00170-021-07886-7

W. Wu, Q. Wang, L. Yang, Z. Liu, X. Li, Y. Li, Journal of Materials Research and Technology 9 (2020) 12976-12995. https://doi.org/10.1016/j.jmrt.2020.09.033

T. O. Olugbade, Analytical Letters 54 (2021) 1055-1067. https://doi.org/10.1080/00032719.2020.1793994

R. Wang, R. A. Shenoi, A. Sobey, Journal of Constructional Steel Research 143 (2018) 331-342. https://doi.org/10.1016/j.jcsr.2018.01.014

J. C. Kurth, P. D. Krauss, S. W. Foster, Transportation Research Record 2673 (2019) 2-14. https://doi.org/10.1177/0361198119855333

O. S. I. Fayomi, I. G. Akande, C. Ofo, Key Engineering Materials 886 (2021) 159-167. https://doi.org/10.4028/www.scientific.net/KEM.886.159

G. Bahlakeh, B. Ramezanzadeh, M. Ramezanzadeh, Journal of Cleaner Production 210 (2019) 872-886. https://doi.org/10.1016/j.jclepro.2018.11.089

A. Arul, S. Sivagnanam, A. Dey, O. Mukherjee, S. Ghosh, P. Das, RSC Advances 10 (2020) 13420-13429. https://doi.org/10.1039/C9RA10018K

M. A. Fusco, C. J. Oldham, G. N. Parsons, Materials 12 (2019) 672. https://doi.org/10.3390/ma12040672

M. Shourgeshty, M. Aliofkhazraei, A. Karimzadeh, Surface Engineering 35 (2019) 167-176. https://doi.org/10.1080/02670844.2018.1432172

M. Alizadeh, H. Safaei, Applied Surface Science 456 (2018) 195-203. https://doi.org/10.1016/j.apsusc.2018.06.095

O. S. I. Fayomi, G. A. Oluwadare, O. B. Fakehinde, I. G. Akande, W. Nwachia, U. Oziegbe, A. J. Russell, International Journal of Advanced Manufacturing Technology 103 (2019) 2621-2625. https://doi.org/10.1007/s00170-019-03714-1

A. Lelevic, F. C. Walsh, Surface and Coatings Technology 369 (2019) 198-220. https://doi.org/10.1016/j.surfcoat.2019.03.055

R. Manivannan, S. N. Victoria, Solar Energy 173 (2018) 1144-1157. https://doi.org/10.1016/j.solener.2018.08.057

A. D. Torkamani, M. Velashjerdi, A. Abbas, M. Bolourchi, P. Maji, Journal of Composites and Compounds 3 (2021) 106-113. https://doi.org/10.52547/jcc.3.2.4

R. Bhat, A. C. Hegde, J. Electrochem. Sci. Eng. 9(1) (2019) 9-16. https://doi.org/10.5599/jese.565

R. A. Jassim, M. S. Sando, A. M. Farhan, Baghdad Science Journal 19 (2022) 347-354. https://doi.org/10.21123/bsj.2022.19.2.0347

N. LeBozec, D. Thierry, D. Persson, C. K. Riener, G. Luckeneder, Surface and Coatings Technology 374 (2019) 897-909. https://doi.org/10.1016/j.surfcoat.2019.06.052

M. Riđošić, E. García-Lecina, A. Salicio-Paz, J. Bajat, Transactions of the IMF 98 (2020) 114-120. https://doi.org/10.1080/00202967.2020.1748390

O. S. I. Fayomi, O. O. Joseph, I. G. Akande, C. K. Ohiri, K. O. Enechi, N. E. Udoye, Journal of Alloys and Compounds 783 (2019) 246-255. https://doi.org/10.1016/j.jallcom.2018.12.312

O. A. Adetayo, O. Jubril, Fuoye Journal of Engineering and Technology 4 (2019)145-148. https://doi.org/10.46792/FUOYEJET.V4I1.318

J. G. Thakare, C. Pandey, M. M. Mahapatra, R. S. Mulik, Metals and Materials International 27 (2021) 1947-1968. https://doi.org/10.1007/s12540-020-00705-w

V. Kumar, K. Balasubramanian, Progress in Organic Coatings 90 (2016) 54-82. https://doi.org/10.1016/j.porgcoat.2015.09.019

S. G. Croll, Progress in Organic Coatings 148 (2020) 105847. https://doi.org/10.1016/j.porgcoat.2020.105847

M. Islam, M. R. Azhar, N. Fredj, T. D. Burleigh, O. R. Oloyede, A. A. Almajid, S. I. Shah, Surface and Coatings Technology 261 (2015) 141-148. https://doi.org/10.1016/j.surfcoat.2014.11.044

O. S. I. Fayomi, I. G. Akande, A. P. I. Popoola, Journal of Bio-and Tribo-Corrosion 4 (2018) 73. https://doi.org/10.1007/s40735-018-0192-6

A. Buyuksagis, A. T. Baydır, M. Dilek, Protection of Metals and Physical Chemistry of Surfaces 57 (2021) 211-221. http://dx.doi.org/10.1134/S2070205120060076

R. Zandi Zand, V. Flexer, M. De Keersmaecker, K. Verbeken, M. Adriaens, International Journal of Electrochemical Science 10 (2015) 997-1014. http://hdl.handle.net/1854/LU-5775729

L. Pan, W. Ding, W. Ma, J. Hu, X. Pang, F. Wang, J. Tao, Materials & Design 160 (2018) 1106-1116. https://doi.org/10.1016/j.matdes.2018.10.034

T. S. Hamidon, M. H. Hussin, Progress in Organic Coatings 140 (2020) 105478. https://doi.org/10.1016/j.porgcoat.2019.105478

I. G. Akande, O. O. Oluwole, O. S. I. Fayomi, Defence Technology 15 (2019) 526-532. https://doi.org/10.1016/j.dt.2018.11.001

C. Y. Ma, D. Q. Zhao, F. F. Xia, H. Xia, T. Williams, H. Y. Xing, Ceramics International 46 (2020) 6115-6123. https://doi.org/10.1016/j.ceramint.2019.11.075

M. J. Benoit, I. G. Ogunsanya, S. Winkler, M. J. Worswick, M. A. Wells, C. M. Hansson, Journal of Materials Engineering and Performance 30 (2021) 2876-2889. https://doi.org/10.1007/s11665-021-05616-4

K. Brandenburg, D. Hornbach, P. Prevey, N. Jayaraman, Analysis and Prevention 21 (2021) 1002–1010. https://doi.org/10.1007/s11668-021-01146-2

A. Singh, G. Singh, V. Chawla, Journal of the Mechanical Behavior of Biomedical Materials 85 (2018) 20-36. https://doi.org/10.1016/j.jmbbm.2018.05.030

N. Jager, M. Meindlhumer, S. Spor, H. Hruby, J. Julin, A. Stark, R. Daniel, Acta Materialia 186 (2020) 545-554. https://doi.org/10.1016/j.actamat.2020.01.026

L. Wang, S. Xing, Z. Shen, H. Liu, C. Jiang, V. Ji, Y. Zhao, Journal of Materials Science & Technology 105 (2022) 182-193. https://doi.org/10.1016/j.jmst.2021.08.002

A. Sadeghzadeh-Attar, G. Ayubikia, M. Ehteshamzadeh, Surface and Coatings Technology 307 (2016) 837-848. https://doi.org/10.1016/j.surfcoat.2016.10.026

S. Tikale, K. N. Prabhu, Journal of Materials Science: Materials in Electronics 32 (2021) 2865-2886. https://doi.org/10.1007/s10854-020-05040-9

K. Alipour, F. Nasirpouri, Journal of the Electrochemical Society 166 (2019) D1-D9. https://doi.org/10.1149/2.0191902jes

A. A. Ayoola, O. S. I. Fayomi A. P. I. Popoola, Defence Technology 15 (2019) 106-110. https://doi.org/10.1016/j.dt.2018.04.008

M. Sivapragash, P. Kumaradhas, B. S. J. Retnam, X. F. Joseph, U. T. S. Pillai, Materials & Design 90 (2016) 713-722. https://doi.org/10.1016/j.matdes.2015.11.027

I. Milosev, G. S. Frankel, Journal of the Electrochemical Society 165 (2018) C127-C144. https://doi.org/10.1149/2.0371803jes

X. Li, Y. Feng, B. Liu, D. Yi, X. Yang, W. Zhang, P. Bai, Journal of Alloys and Compounds 788 (2019) 485-494. https://doi.org/10.1016/j.jallcom.2019.02.223

J. Wang, H. Yang, H. Huang, J. Ruan, S. Ji, Journal of Alloys and Compounds 798 (2019) 576-586. https://doi.org/10.1016/j.jallcom.2019.05.208

T. Han, J. Li, N. Zhao, C. He, Carbon 159 (2020) 311-323. https://doi.org/10.1016/j.carbon.2019.12.029




How to Cite

Akande, I. G., Fayomi, O. S. I. ., Akpan, B. J., Aogo, O. A., & Onwordi, P. N. (2022). Exploration of the effect of Zn-MgO-UPP coating on hardness, corrosion resistance and microstructure properties of mild steel: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(5), 829–840. https://doi.org/10.5599/jese.1311



Electrodeposition and coatings