Performance of newly synthesized pyrimidine derivative as corrosion inhibitor: experimental and quantum chemical investigation

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2770

Keywords:

Pyrimidine Schiff base, mild steel, corrosion resistance, electrochemical methods, quantum chemical calculations

Abstract

In this investigation, an alternative Schiff base with a pyrimidine ring was produced through the reaction of (1-amino-4-phenyl-2-thioxo-1,2-dihydropyrimidin-5-yl)(phe­nyl)me­tha­no­ne (1) with thiophene-2-carboxaldehyde. Structural verification of the resulting com­po­und, designated (E)-phenyl (4-phenyl-1-(thiophen-2-ylmethyleneamino)-2-thioxo-1,2-di­hy­dro­py­rimidin-5-yl)methanone, (PPTT), was accomplished by employing a number of spec­troscopic methods, including 13C-NMR, 1H-NMR, and FTIR. Open-circuit potential, potentiodynamic polarization, linear polarization resistance, and electrochemical impedance spectroscopy were among the electrochemical methods used to evaluate the efficacy of PPTT as a corrosion inhibitor. After one hour of immersion, experimental data showed that PPTT functioned as a mixed-type corrosion inhibitor, attaining up to 83.8 % inhibition for 2 mM PPTT in 1 M HCl solution. Under these conditions, the corrosion current density dropped from 123.2 to 31.4 μA cm-2. Surface adsorption of PPTT on mild steel in 1 M HCl followed the Langmuir adsorption isotherm, consistent with a negative Gibbs free energy value, indicating both chemisorption and physisorption. In addition, multiple quantum che­mical parameters (electronegativity, EHOMO, ELUMO, chemical hardness, chemical softness) were calculated using Gaussian 09 to further elucidate the experimental observations.

Downloads

Download data is not yet available.

References

[1] A. Al-Amiery, W. N. R. Wan Isahak, W. K. Al-Azzawi, Sustainable corrosion Inhibitors: A key step towards environmentally responsible corrosion control, Ain Shams Engineering Journal 15 (2024) 102672. https://doi.org/10.1016/j.asej.2024.102672

[2] R. Bender, D. Féron, D. Mills, S. Ritter, Ralph Bäßler, D. Bettge, I. D. Graeve, A. Dugstad, S. Grassini, T. Hack, M. Halama, E. H. Han, T. Harder, G. Hinds, J. Kittel, R. Krieg, C. Leygraf, L. Martinelli, A. Mol, D. Neff, J.O. Nilsson, I. Odnevall, S. Paterson, S. Paul, T. Prošek, M. Raupach, R. I. Revilla, F. Ropital, H. Schweigart, E. Szala, H. Terryn, J. Tidblad, S. Virtanen, P. Volovitch, D. Watkinson, M. Wilms, G. Winning, M. Zheludkevich, Corrosion challenges towards a sustainable society, Materials and Corrosion 73 (2022) 1730-1751. https://doi.org/10.1002/maco.202213140

[3] R. Singh, D. Prasad, Corrosion: Basics, economic adverse effects, and its mitigation, grafted biopolymers as corrosion inhibitors: Safety, Sustainability, Efficiency, John Wiley & Sons. Inc., New York, USA, 2023, p. 1-10. https://doi.org/10.1002/9781119881391.ch1

[4] M. Ghazi Kadhim AlFalah, M. Saracoglu, M. I. Yilmazer, F. Kandemirli, Corrosion inhibition performance of 2- Fluorophenyl-2, 5-dithiohydrazodicarbonamide for copper in 3.5%NaCl Media: Experimental and Monte Carlo insights, Al-Qadisiyah Journal for Engineering Sciences 16 (2023) 150-159. https://doi.org/10.30772/qjes.2023.178995

[5] M. Ghazi, K. Alfalah, M. Izzettin, K. Saad, M. Freigita, Corrosion inhibition potential of new oxo-pyrimidine derivative on mild steel in acidic solution : Experimental and theoretical approaches, Journal of Molecular Structure 1315 (2024) 138773. https://doi.org/10.1016/j.molstruc.2024.138773

[6] A. A. Al-Amiery, W. N. R. W. Isahak, W. K. Al-Azzawi, Corrosion inhibitors: Natural and synthetic organic inhibitors, Lubricants 11 (2023) 174. https://doi.org/10.3390/lubricants11040174

[7] R. Aslam, G. Serdaroglu, S. Zehra, D.K. Verma, J. Aslam, L. Gui, C. Verma, E. E. Ebonso, M. A. Quraishi, Corrosion inhibition of steel using different families of organic compounds: Past and present progress, Journal of Molecular Liquids 348 (2022) 118373. https://doi.org/10.1016/j.molliq.2021.118373

[8] H. Assad, A. Kumar, Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds, Journal of Molecular Liquids 344 (2021) 117755. https://doi.org/10.1016/j.molliq.2021.117755

[9] N. Arrousse, Y. Fernine, N. Al-Zaqri, A. Boshaala, E. Ech-chihbi, R. Salim, F. El Hajjaji, A. Alami, M. Ebn Touhami, M. Taleb, Thiophene derivatives as corrosion inhibitors for 2024-T3 aluminum alloy in hydrochloric acid medium, RSC Advances 12 (2022) 10321-10335. https://doi.org/10.1039/D2RA00185C

[10] K. Rasheeda, A. H. Alamri, P. A. Krishnaprasad, N. P. Swathi, V. D. P. Alva, T. A. Aljohani, Efficiency of a pyrimidine derivative for the corrosion inhibition of C1018 carbon steel in aqueous acidic medium: Experimental and theoretical approach, Colloids and Surfaces A 642 (2022) 128631. https://doi.org/10.1016/j.colsurfa.2022.128631

[11] Q. Zhang, L. Luo, H. Xu, Z. Hu, C. Brommesson, J. Wu, Z. Sun, Y. Tian, K. Uvdal, Design, synthesis, linear and nonlinear photophysical properties of novel pyrimidine-based imidazole derivatives, New Journal of Chemistry 40 (2016) 3456-3463. https://doi.org/10.1039/C5NJ02874D

[12] M. Yadav, S. Kumar, R. Sinha, I. Bahadur, E. E. Ebenso, New pyrimidine derivatives as efficient organic inhibitors on mild steel corrosion in acidic medium: Electrochemical, SEM, EDX, AFM and DFT studies, Journal of Molecular Liquids 211 (2015) 135-145. https://doi.org/10.1016/j.molliq.2015.06.063

[13] N. Arrousse, R. Salim, Y. Kaddouri, D. Zahri, F. El Hajjaji, R. Touzani, M. Taleb, S. Jodeh, The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: Experimental, surface analysis and in silico approach studies, Arabian Journal of Chemistry 13 (2020) 5949-5965. https://doi.org/10.1016/j.arabjc.2020.04.030

[14] K. Ansari, M. A. Quraishi, A. Singh, S. Ramkumar, I. B. Obot, Corrosion inhibition of N80 steel in 15% HCl by pyrazolone derivatives: Electrochemical, surface and quantum chemical studies, RSC Advances 6 (2016) 24130-24141. https://doi.org/10.1039/C5RA25441H

[15] C. Verma, M. A. Quraishi, Recent progresses in Schiff bases as aqueous phase corrosion inhibitors: Design and applications, Coordination Chemistry Reviews 446 (2021) 214105. https://doi.org/10.1016/j.ccr.2021.214105

[16] U. Nazir, Z. Akhter, N. K. Janjua, M. A. Asghar, S. Kanwal, T. M. Butt, A. Sani, F. Liagat, R. Hussain, F. U. Shah, Biferrocenyl Schiff bases as efficient corrosion inhibitors for an aluminium alloy in HCl solution: A combined experimental and theoretical study, RSC Advances 10 (2020) 7585-7599. https://doi.org/10.1039/C9RA10692H

[17] S. L. Granese, B. M. Rosales, C. Oviedo, J. O. Zerbino, The inhibition action of heterocyclic nitrogen organic-compounds on Fe and steel in HCl media, Corrosion Science 33 (1992) 1439-1453. https://doi.org/10.1016/0010-938X(92)90182-3

[18] K. F. Khaled, N. A. Al-Mobarak, Predictive model for corrosion inhibition of mild steel by thiophene and its derivatives using artificial neural network, International Journal of Electrochemical Science 7 (2012) 1045-1059. https://doi.org/10.1016/S1452-3981(23)13393-1

[19] Z. Atioğlu, H. Karataş, Z. Kökbudak, The crystal structure of 5-benzoyl-1-[(E)-(4-fluorobenzylidene) amino]-4-phenylpyrimidin-2 (1H)-one, C24H16FN3O2, Zeitschrift für Kristallographie - New Crystal Structures 236 (2021) 1035-1037. http://dx.doi.org/10.1515/ncrs-2021-0216

[20] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H.P . Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K .N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016., https://gaussian.com/citation/

[21] G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corrosion Science 50 (2008) 2981-2992. https://doi.org/10.1016/j.corsci.2008.08.043

[22] G. Gece, S. Bilgiç, Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media, Corrosion Science 51 (2009) 1876-1878. https://doi.org/10.1016/j.corsci.2009.04.003

[23] M. G. K. Alfalah, A. H. Abbar, F. Kandemirli, Improving the corrosion behaviour of Zn-Ni alloy coatings on 316 SS from chloride-sulfate bath by addition of triethanolamine or sucrose, Journal of Electrochemical Science and Engineering 15 (2025) 2607. https://doi.org/10.5599/jese.2607

[24] M. G. K. AlFalah, K. S. M. Freigita, M. I. Yilmazer, M. Saracoglu, Z. Kokbudak, F. Kandemirli, Corrosion inhibition potential of new oxo-pyrimidine derivative on mild steel in acidic solution: Experimental and theoretical approaches, Journal of Molecular Structure 1315 (2024) 1-13. https://doi.org/10.1016/j.molstruc.2024.138773

[25] Ž. . Tasić, M. B. Petrović Mihajlović, M. B. Radovanović, A. T. Simonović, M. M. Antonijević, Cephradine as corrosion inhibitor for copper in 0.9% NaCl solution, Journal of Molecular Structure 1159 (2018) 46-54. https://doi.org/10.1016/j.molstruc.2018.01.031

[26] M.A . Amin, S. S. Abd El-Rehim, E. E. F. El-Sherbini, R. S. Bayoumi, The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid, Electrochimica Acta 52 (2007) 3588-3600. https://doi.org/10.1016/j.electacta.2006.10.019

[27] M. G. K. AlFalah, E. Kamberli, A. H. Abbar, F. Kandemirli, M. Saracoglu, Corrosion performance of electrospinning nanofiber ZnO-NiO-CuO/polycaprolactone coated on mild steel in acid solution, Surfaces and Interfaces 21 (2020) 100760. https://doi.org/10.1016/j.surfin.2020.100760

[28] C. Verma, I. B. Obot, I. Bahadur, E. S. M. Sherif, E. E. Ebenso, Choline based ionic liquids as sustainable corrosion inhibitors on mild steel surface in acidic medium: Gravimetric, electrochemical, surface morphology, DFT and Monte Carlo simulation studies, Applied Surface Science 457 (2018) 134-149. https://doi.org/10.1016/j.apsusc.2018.06.035

[29] M. Evecen, Alfalah, M. G. K, Improvement of the corrosion behaviour of mild steel by deposition of Zn-Ni-Cu-Fe-Cd from an acetate sulphate bath, Ochrona Przed Korozja 1 (2025) 9-15. https://doi.org/10.15199/40.2025.2.2

[30] M. Murmu, S. K. Saha, P. Bhaumick, N. C. Murmu, H. Hirani, P. Banerjee, Corrosion inhibition property of azomethine functionalized triazole derivatives in 1 mol.L−1 HCl medium for mild steel: Experimental and theoretical exploration, Journal of Molecular Liquids 313 (2020) 113508. https://doi.org/10.1016/j.molliq.2020.113508

[31] K. S. M. Ferigita, M. G. K. AlFalah, M. Saracoglu, Z. Kokbudak, S. Kaya, M. O. A. Alaghani, F. Kandemirli, Corrosion behaviour of new oxo-pyrimidine derivatives on mild steel in acidic media: Experimental, surface characterization, theoretical, and Monte Carlo studies, Applied Surface Science 7 (2022) 100200. https://doi.org/10.1016/j.apsadv.2021.100200

[32] M. G. K. AlFalah, F. Kandemirli, Corrosion inhibition potential of dithiohydrazodicarbonamide derivatives for mild steel in acid media: Synthesis, experimental, DFT, and Monte Carlo studies, Arabian Journal for Science and Engineering 47 (2022) 6395-6424. https://doi.org/10.1007/s13369-021-06368-y

[33] A.Y. Musa, A. A. H. Kadhum, A. B. Mohamad, A. A. B. Rahoma, H. Mesmari, Electrochemical and quantum chemical calculations on 4,4-dimethyloxazolidine-2-thione as inhibitor for mild steel corrosion in hydrochloric acid, Journal of Molecular Structure 969 (2010) 233-237. https://doi.org/10.1016/j.molstruc.2010.02.051

[34] A. Popova, M. Christov, T. Deligeorgiev, Influence of the molecular structure on the inhibitor properties of benzimidazole derivatives on mild steel corrosion in 1 M hydrochloric acid, Corrosion 59 (2003) 756-764. https://doi.org/10.5006/1.3277604

[35] C. Verma, E. E. Ebenso, M. A. Quraishi, Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview, Journal of Molecular Liquids 233 (2017) 403-414. https://doi.org/10.1016/j.molliq.2017.02.111

[36] R. Yıldız, An electrochemical and theoretical evaluation of 4,6-diamino-2-pyrimidinethiol as a corrosion inhibitor for mild steel in HCl solutions, Corrosion Science 90 (2015) 544-553. https://doi.org/10.1016/j.corsci.2014.10.047

[37] J. Bhawsar, P. Jain, M. G. Valladares-Cisneros, C. Cuevas-Arteaga, M. R. Bhawsar, Quantum chemical assessment of two natural compounds: Vasicine and vasicinone as green corrosion inhibitors, International Journal of Electrochemical Science 13 (2018) 3200-3209. https://doi.org/10.20964/2018.04.57

[38] L. C. Murulana, A. K. Singh, S. K. Shukla, M. M. Kabanda, E. E. Ebenso, Experimental and quantum chemical studies of some bis(trifluoromethyl-sulfonyl). Imide imidazolium-based ionic liquids as corrosion inhibitors for mild steel in hydrochloric acid solution, Journal of Industrial and Engineering Chemistry 51 (2012) 13282-13299. https://doi.org/10.1021/ie300977d

[39] Y. El Aoufir, R. Aslam, F. Lazrak, R. Marzouki, S. Kaya, S. Skal, A. Ghanimi, I. H. Ali, A. Guenbour, H. Lgaz, I. M. Chung, The effect of the alkyl chain length on corrosion inhibition performances of 1,2,4-triazole-based compounds for mild steel in 1.0 M HCl: Insights from experimental and theoretical studies, Journal of Molecular Liquids 303 (2020) 112631. https://doi.org/10.1016/j.molliq.2020.112631

[40] N. A. Wazzan, I. B. Obot, S. Kaya, Theoretical modelling and molecular level insights into the corrosion inhibition activity of 2-amino-1,3,4-thiadiazole and its 5-alkyl derivatives, Journal of Molecular Liquids 221 (2016) 579-602. https://doi.org/10.1016/j.molliq.2016.06.011

[41] S. Kaya, C. Kaya, L. Guo, F. Kandemirli, B. Tüzün, İ. Uğurlu, L.H. Madkour, M. Saraçoğlu, Quantum chemical and molecular dynamics simulation studies on inhibition performances of some thiazole and thiadiazole derivatives against corrosion of iron, Journal of Molecular Liquids 219 (2016) 497-504. https://doi.org/10.1016/j.molliq.2016.03.042

[42] L. Guo, S. Zhu, S. Zhang, Q. He, W. Li, Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium, Corrosion Science 87 (2014) 366-375. https://doi.org/10.1016/j.corsci.2014.06.040

[43] R. Hasanov, M. Sadıkoğlu, S. Bilgiç, Electrochemical and quantum chemical studies of some Schiff bases on the corrosion of steel in H2SO4 solution, Applied Surface Science 253 (2007) 3913-3921. https://doi.org/10.1016/j.apsusc.2006.08.025

[44] P. K. Chattaraj, B. Maiti, Reactivity dynamics in atom−field interactions: A quantum fluid density functional study, The Journal of Physical Chemistry A 105 (2001) 169-183. https://doi.org/10.1021/jp0019660

[45] C. Verma, M. A. Quraishi, K. Kluza, M. Makowska-Janusik, L. O. Olasunkanmi, E. E. Ebenso, Corrosion inhibition of mild steel in 1 M HCl by D-glucose derivatives of dihydropyrido [2,3-d:6,5-d′] dipyrimidine-2, 4, 6, 8 (1H,3H,5H,7H)-tetraone, Scientific Reports 7 (2017) 44432. https://doi.org/10.1038/srep44432

[46] G. Gao, C. Liang, Electrochemical and DFT studies of β-amino-alcohols as corrosion inhibitors for brass, Electrochimica Acta 52 (2007) 4554-4559. https://doi.org/10.1016/j.electacta.2006.12.058

[47] R. G. Parr, L. V. Szentpály, S. Liu, Electrophilicity index, Journal of the American Chemical Society 121 (1999) 1922-1924. https://doi.org/10.1021/ja983494x

[48] M. Djenane, S. Chafaa, N. Chafai, R. Kerkour, A. Hellal, Synthesis, spectral properties and corrosion inhibition efficiency of new ethyl hydrogen [(methoxyphenyl) (methylamino) methyl] phosphonate derivatives: Experimental and theoretical investigation, Journal of Molecular Structure 1175 (2019) 398-413. https://doi.org/10.1016/j.molstruc.2018.07.087

[49] M. A. Quraishi, R. Sardar, Hector bases - a new class of heterocyclic corrosion inhibitors for mild steel in acid solutions, Journal of Applied Electrochemistry 33 (2003) 1163-1168. https://doi.org/10.1023/B:JACH.0000003865.08986.fb

[50] H. Tanak, A. Ağar, M. Yavuz, Experimental and quantum chemical calculational studies on 2-[(4-fluorophenylimino) methyl]-3,5-dimethoxyphenol, Journal of Molecular Modeling 16 (2010) 577-587. https://doi.org/10.1007/s00894-009-0574-2

[51] A. Tazouti, M. Galai, R. Touir, M. E. Touhami, A. Zarrouk, Y. Ramli, M. Saracoglu, S. Kaya, F. Kandemirli, C. Kaya, Experimental and theoretical studies for mild steel corrosion inhibition in 1.0 M HCl by three new quinoxalinone derivatives, Journal of Molecular Liquids 221 (2016) 815-832. https://doi.org/10.1016/j.molliq.2016.03.083

[52] M. Shahraki, M. Dehdab, S. Elmi, Theoretical studies on the corrosion inhibition performance of three amine derivatives on carbon steel: Molecular dynamics simulation and density functional theory approaches, Journal of the Taiwan Institute of Chemical Engineers 62 (2016) 313-321. https://doi.org/10.1016/j.jtice.2016.02.010

[53] D. Bhattacharjee, T. K. Devi, R. Dabrowski, A. Bhattacharjee, Birefringence, polarizability order parameters and DFT calculations in the nematic phase of two bent-core liquid crystals and their correlation, Journal of Molecular Liquids 272 (2018) 239-252. https://doi.org/10.1016/j.molliq.2018.09.052

[54] N. V. Likhanova, M. A. Domínguez-Aguilar, O. Olivares-Xometl, N. Nava-Entzana, E. Arce, H. Dorantes, The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment, Corrosion Science 52 (2010) 2088-2097. https://doi.org/10.1016/j.corsci.2010.02.030

Published

22-06-2025

Issue

Section

Corrosion

How to Cite

Performance of newly synthesized pyrimidine derivative as corrosion inhibitor: experimental and quantum chemical investigation: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(4), 2770. https://doi.org/10.5599/jese.2770

Funding data

Similar Articles

1-10 of 481

You may also start an advanced similarity search for this article.